Example 1.18: Needle in the Hay Stack

Input

NeedleInTheHayStack <- function(nn, p=0.1, col="black", ...) \{ oldpar <- par(mfrow=c(1,length(nn)))
on.exit(par(oldpar))
for (n in $n n$) \{
nhay <- n-round $(p * n)$; xhay <- runif(nhay); yhay <- runif(nhay)
needle <- runif(round $(p * n)$)
plot $(x=c$ (xhay, needle), $y=c(y h a y, n e e d l e)$,
main = paste("n = ", n, ", p = ", p, sep=""),
cex.main=3.0,
axes=FALSE, frame.plot=TRUE,
xlab="", ylab="",
col= col, ...)
\}
\}
NeedleInTheHayStack (c(40, 200,1000, 5000, 25000))

If n is very small, we have little chance to find the needle in the hay stack. As n increases, the structure becomes apparent. But if n gets large, the simple scatter plot seems overloaded and we cannot access the information. This is a general problem which is only delayed if we use a larger plotting area or smaller plot symbols. But we can enhance the plot using the alpha channel to make it useful again ${ }^{5}$.

[^0]
Example 1.19: Needle in the Hay Stack

NeedleInTheHayStack(25000, col = $\underset{\text { rgb }}{\text { Input }}(r e d=0$, blue=0, green=0, alpha=0.1))

[^0]: ${ }^{5}$ Visualising data sets for large sample sizes is a theme of its own. See [?].

