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CHAPTER 1

Basic Data Analysis

1.1 R Programming Conventions

1.2 Generation of Random Numbers and Patterns

1.2.1 Random Numbers

Exercise 1.1

Try experimenting with these plots and runif(). Do the plots show
images of random numbers?

To be more precise: do you accept these plots as images of 100
independent realisations of random numbers, distributed uniformly
on (0, 1)?

Repeat your experiments and try to note as precisely as possible
the arguments you have for or against (uniform) randomness. What
is your conclusion?

Walk through your arguments and try to draft a test strategy to
analyse a sequence of numbers for (uniform) randomness. Try to
formulate your strategy as clearly as possible.

Hint: For comparison, you can keep several plots in a window. The
code

par(mfrow = c(2, 3))

parametrises the graphics system to show six plots simultaneously,
arranged row wise as a 2× 3 matrix (2 rows, 3 columns).

The function par is the central function to control graphics param-
eters. For more information, see help(par).

1.2.2 Patterns

1
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Exercise 1.2

Use

plot(sin(1:100))

to generate a plot of a discretised sine function. Use your strategy
from Exercise 1.1. Does your strategy detect that the sine function
is not a random sequence?

Hint: If you do not recognise the sine function at first sight, use
plot(sin (1:100), type = "l") to connect the points.

1.3 Case Study: Distribution Diagnostics

1.3.1 First Pass for Example ??: Distribution Functions

1.3.2 First Pass for Example ??: Histograms

Exercise 1.3

Use runif(100) to draw random numbers and generate histograms
with 5, 10, 20, 50 cells of equal size. Use repeated samples.
Do the histogram plots correspond to what you expect from inde-
pendent uniform random variates? Try to note your observations
in detail.
Repeat the experiment with two cells (0, 0.5], (0.5, 1).

hist(runif(100), breaks = c(0, 0.5, 1))

Repeat the experiment with random numbers generated by
rnorm(100) and compare the results from runif(100) and
rnorm(100).

Exercise 1.4

Modify Example ?? (page ??) to include the kernel name and the
bandwidth used in the kernel density estimation.
You have to store the result from density() and access its com-
ponents in analogy to Example ?? (page ??).

Barcharts

1.3.3 Statistics of Distribution Functions; Kolmogorov-Smirnov Tests
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Exercise 1.5

Using help(rbeta) you get information about the functions avail-
able to work with beta distributions. Generate plots for the den-
sities of the beta distribution for n = 16, 32, 64, 128 and i =
n/4, n/2, 3n/4. Use the function curve() to generate the plots.
For more information, see help(curve).

Exercise 1.6

Draw the distribution function with the corrected reference line.

∗ We use the graphical display for a single sample, not for a run of
samples. Is the expected value of X(i) an adequate reference? Are
there alternatives that can serve as references?

If you see alternatives, give an implementation.

Monte Carlo Confidence Bands
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Example 1.1: Monte Carlo Confidence Bands
Input

x <- (sin(1:100)+1)/2 # demo example only

y <- (1:length(x))/length(x)

plot(sort(x), y)

nrsamples <- 19 # no of simulations

samples <- matrix(data = runif(length(x)* nrsamples),

nrow = length(x), ncol = nrsamples)

samples <- apply(samples, 2, sort)

envelope <- t(apply(samples, 1, range))

lines(envelope[, 1], y, col = "red")

lines(envelope[, 2], y, col = "red")
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Exercise 1.7

Make use of the help() -function and comment on Example 1.1 step
by step. Take special note of the new functions that are introduced
here.

R Iterators

(cont.)→
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R Iterators

(cont.)

apply() applies a function to the rows or columns of a matrix.

Example: samples <- apply(samples, 2, sort)

sorts by column.

outer() generates a matrix of all pair-wise combinations of two vectors,
and applies a function to all pairs.

Exercise 1.8

∗ Why 19?

Hint: Try to take an abstract simplified view of the problem first:
let T be a measurable function and X0, X1, . . . , Xnrsamples inde-
pendent samples with a common distribution function.

What is P (T (X0) > T (Xi)) for all i > 0?

In a second step, give an abstract formulation for the example
above. Then consider the special case nrsamples = 19.

Exercise 1.9 Monte Carlo Coverage

∗ Estimate the coverage probability of the Monte Carlo band by first
generating a band as above. (How can you draw the band without
first making a plot for a special sample?)

Next, generate sim simulation samples of uniform random numbers
of sample size 100. Count how many simulations give a sample
within the band. You have to make your choice of the number sim
of simulations (100? 1000? 999?) for this step.

Use this information to estimate the coverage probability.

Hint: any() can be used to evaluate a comparison for a full vector.

Theorem 1.1 For all integer n and any positive λ, we have

P(
√
n sup |Fn − F | > λ) ≤ 2e−2λ

2

.

Proof. [6], Corollary 1

This inequality is valid even if F is not continuous.
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Exercise 1.10 Finite Sample Bounds

Use the inequality given in Theorem 1.1 to calculate bounds for√
n sup |Fn − F |.

Add finite sample bands to the empirical distribution function.

Exercise 1.11

Using help(ks.test) you get information on how to invoke the
function ks.test.

Which results do you expect if you test the following vectors for a
uniform distribution?

1:100

runif(100)

sin(1:100)

rnorm(100)

Perform these tests and discuss the results. For the test, scale the
values so that they fall into the interval [0, 1], or use a uniform
distribution on an interval that is adapted to the data.

1.3.4 Statistics of Histograms and Related Plots; χ2-Tests

Exercise 1.12

Use help(chisq.test) to see the calling structure for χ2 tests.
Apply it to test the hypothesis (pj = 1/J), J = 5 on the following
vectors of bin counts:

(3 3 3 3 3) (1 2 5 3 3) (0 0 9 0 6).

Exercise 1.13

Which results do you expect if you use a χ2 test to check the
following vectors for a uniform distribution?

1:100

runif(100)

(cont.)→



7

Exercise 1.13 (cont.)

sin(1:100)

rnorm(100)

Perform these tests and discuss the results.

Hint: The function chisq.test() expects a frequency table as
input. The function table() can be used to generate a frequency
table directly (see help(chisq.test)). But you can also use the
function hist(), which gives counts as one component of its result.

Exercise 1.14

∗ Sketch comparable test environments for fixed and adaptive choice
of histogram cells.

For fixed and for adaptive choice of histogram cells draw s = 1000

samples of size 50 from runif(). Calculate in both settings the
formal χ2 statistics and plot its distribution functions.

Compare the distribution functions.

Exercise 1.15

For n = 10, 50, 100, draw 300 samples using runif(n). For each
sample, calculate the χ2 and the Kolmogorov-Smirnov statistic.

You have to choose a χ2 test. What is your choice?

Plot the distribution functions of these statistics and compare them
to the theoretical (asymptotic) distributions.

Are there any indications against the assumption of independent
uniform random numbers?

Hint: The functions for the χ2 and Kolmogorov-Smirnov test keep
their internal information as a list. To get the names of the list
elements, you can create a sample object. For example, use

names(chisq.test(runif(100))).
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Exercise 1.16

∗∗ Analyse the power of the Kolmogorov-Smirnov test and the χ2 tests.
Select values for n,m and α, and choose 9 pairs for (a, b). What
are your arguments for your choices?

Use your chosen parameters to draw samples from rbeta().

Apply the Kolmogorov-Smirnov test and a χ2 test with 10 cells of
equal size on (0, 1).

Choose alternative parameters (a, b) so that you can compare the
decision rules along the following lines:

i) a = b

ii) b = 1

iii) a = 1

and run these simulations.

Choose alternative parameters (a, b) so that you can compare the
decision rules over the range 0 < a, b < 5.

Your conclusions?

Hint: outer(x, y, fun) applies a function fun() to all pairs of
values from x, y and returns the result as a matrix.

Using

contour()

you can generate a contour plot.
See demo("graphic").

Exercise 1.17

?? Design a test strategy to unmask “pseudo-random numbers”.

Test this strategy using simple examples

i) x x = 1..100 mod m for convenient m

ii) sin(x) x = 1..100

iii) . . .

Do you tag these sequences as “not random”?

Now try to unmask the random number generators provided by R.
Can you identify the generated sequences as “not random”?

1.4 Moments and Quantiles
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Exercise 1.18

Generate a sample of random variables with sample size 100 from
the distributions with the following densities:

p(x) =


0 x < 0

1 0 ≤ x ≤ 1

0 x > 1

and

p(x) =



0 x ≤ 0

2 0 < x ≤ 1/4

0 1/4 < x ≤ 3/4

2 3/4 < x ≤ 1

0 x > 1

Estimate the mean, variance and standard deviation in each of
these.

Repeat the estimation for 1000 samples. Analyse the distribution
of estimated mean, variance and standard deviation for repeated
samples.

Exercise 1.19

Generate a sample of 100 random variables from the distributions
of Exercise 1.18.
Estimate the median, and the lower and upper quartiles.

Repeat the estimation for 1000 samples. Analyse the distribution
of the estimated median, lower and upper quartiles from repeated
samples.
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Example 1.2: Box-and-Whisker Plot
Input

oldpar <- par(mfrow = c(1, 4))

boxplot(runif(100), main = "uniform")

boxplot(rnorm(100), main = "normal")

boxplot(exp(rnorm(100)), main = "lognormal")

boxplot(rcauchy(100), main = "cauchy")

par(oldpar)
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Exercise 1.20

Modify Example 1.2 so that the plots are comparable: adjust the
location so that the medians are at the same height. Adjust the
scales so that the inter-quartile ranges have same length.

Exercise 1.21

For continuous distributions and the median Xmed we have

P (Xi ≥ Xmed) = 0.5.

Hence we can find a k such that

k = min{k : P (X(k) ≤ Xmed) < α}

and X(k) as an upper bound for the median with confidence level
1− α.

Use this idea to construct a confidence interval for the median with
confidence level 1− α = 0.9.

Modify the box-and-whisker plot to show this interval.

(cont.)→
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Exercise 1.21 (cont.)

Hint: You need the distribution function FX , evaluated at the
position marked by the order statistic X(k). The distributions of
FX(X(k)) are discussed in Theorem ??.

The box-and-whisker plot offers an option notch = TRUE to mark
confidence intervals. Try to use the documentation to find out how
a notch is calculated. Compare your confidence intervals with those
marked using notch.

∗ Use an analogous strategy to get a distribution-independent confi-
dence interval for the inter-quartile range.

∗ ∗ ∗ Augment the box-and-whisker plot so that it gives information
about the scale in a way that is statistically reliable.

Hint: Why is it not sufficient to mark confidence intervals for the
quartiles?

1.5 R Complements

1.5.1 Random Numbers

1.5.2 Graphical Comparisons

Exercise 1.22

Generate a PP plot of the t(ν) distribution against the standard
normal distribution in the range 0.01 ≤ p ≤ 0.99 for ν = 1, 2, 3, . . ..

Generate a QQ plot of the t(ν) distribution against the standard
normal distribution in the range −3 ≤ x ≤ 3 for ν = 1, 2, 3, . . ..

How large must ν be so that the t distribution is barely different
from the normal distribution in these plots?

How large must ν be so that the t distribution is barely differ-
ent from the normal distribution if you compare the graphs of the
distribution functions?
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Exercise 1.23

Use PP plots instead of distribution functions to illustrate the χ2-
and Kolmogorov-Smirnov approximations.

Exercise 1.24

Use QQ plots instead of distribution functions.
Can you add confidence regions to these plots with the help of the
χ2- resp. Kolmogorov-Smirnov statistics?

Exercise 1.25

Generate a matrix of dimensions (nrow ∗ ncol− 1), length(x) with
random numbers and use apply() to avoid the loop.

Hint: See Example 1.1 (page 3).

Exercise 1.26

Use rnorm() to generate with pseudo-random numbers for the nor-
mal distribution for sample size n = 10, 20, 50, 100.

For each sample, generate a PP plot and a QQ plot, using the
theoretical normal distribution as a reference.

Add Monte Carlo bands from the envelope of 19 simulations.
Instead of the uniform distribution, you have to use the normal
distribution to generate the Monte Carlo bands. Then you have to
represent the results in the coordinate system of the QQ plots, that
is, the x axis represents the quantiles of the normal distribution.
Hint: Inspect the source of qqnorm().

∗ The bands are initially bands for the standard normal distribution.
Find bands adjusted in scale and location of the data at hand.

1.5.3 Complements: Functions

Exercise 1.27

Rework your programming exercises and write reusable parts as
functions.
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Exercise 1.28

Write as functions:

• A function ehist showing an augmented histogram.

• A function eecdf showing the empirical distribution.

• A function eqqnorm showing a QQ plot with the standard nor-
mal distribution as comparison.

• A function eboxplot showing a box-and-whisker plot.

and

• A wrapper function eplot showing a plot matrix with these four
plots.

Your functions should call the standard functions (or modify them,
if necessary) and guarantee that the plots have an adequate com-
plete annotation.

Vectorisation

I

Exercise 1.29 Vectorisation

Write sqrt0() as a vectorised function using ifelse() .

Compilation

1.5.4 Complements: Enhancing Graphical Displays

Exercise 1.30

Use help(plot) to inspect the possibilities of customising the plot
function. Information on details of the parameters is only available
if you use help(plot.default). Modify your latest plot so it has
a correct main title.

1.5.5 Complements: R Internals

Executing Files

1.5.6 Search Paths, Frames and Environments

1.6 Additional Exercises
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Exercise 1.31 Feature Detection

This series of example tries to judge feature detection sensitivity
of various displays for univariate data. for a preparation, find (and
fix) a display arrangement that is convenient for your display, (for
example par( mfrow=c(5,4)). Select a false detection rate you are
willing to tolerate (for example, 2/20 = 10%).

Write a function plotdens <- function(n) that draws n normal
random numbers for each of the display frames.

* Find a number nsym so that with n ≥ nsym observations most
results appear symmetric (i.e. the non-symmetric samples are below
tolerance rate.

Find a number nunimodal so that with n ≥ nunimodal observations
most results appear unimodal (i.e. the multimodal samples are be-
low tolerance rate.

Modify your function by adding an additional parameter plot-

dens <- function(n, generator=rnorm) that allows to select a
random number generator.

For the following distributions, find a sample size that allow detec-
tion of the given features reliably within tolerance.

Generator Features

uniform flat density

lognormal unimodal, skewed, long tail

Cauchy symmetric, frequent outliers, long tail.

Exercise 1.32 Distribution

Prepare a plot with one display frame showing a test sample, the
others showing uniform random samples. What is the required sam-
ple size to identify a normal distribution with an error rate below
tolerance level? With this sample size, what is the false detection
rate if you start with a uniform sample.

Exchange the roles. Use a uniform sample as a test sample, and
normal samples for comparisons. What is the required sample size
to identify a uniform distribution with an error rate below tolerance
level? With this sample size, what is the false detection rate if you
start with a gaussian sample.
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Exercise 1.33

Repeat the example above using a QQ-Plot.

Repeat the example above using a histogram.

1.6.1 Complements: Packages

Using Packages

Building Packages

Exercise 1.34

Install the functions from Exercise 1.28 as a package. You can pre-
pare the package with package.skeleton() , if you have already
defined the functions.

Load the package. Verify that you can still load the package with
library() if you have restarted the R system.

Hint: For an object x, the statement prompt(x) generates a skele-
ton upon which you can build a documentation for x.

Compilation

1.7 Statistical Summary

1.8 Literature and Additional References

[9] R Development Core Team (2000–2008): Writing R Extensions.
See: <http://www.r-project.org/manuals.html>.

[12] Shorack, G. R.; Wellner, J. A.: Empirical Processes with Applications to Statistics.
Wiley, New York, 1986.

[3] Gänßler, P.; Stute, W.: Wahrscheinlichkeitstheorie.
Springer, Heidelberg, 1977.

[4] Gentleman, R.; Ihaka, R.: Lexical Scope and Statistical Computing.
Journal of Computational and Graphical Statistics 9 (2000) 491–508.

<http://www.r-project.org/manuals.html>
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CHAPTER 2

Regression

2.1 General Regression Model

2.2 Linear Model

2.2.1 Factors

2.2.2 Least Squares Estimation

For this example data set, we get the least squares estimator using

Example 2.1: Least Squares Estimator

Input
lm(y ~ x)

Output
Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

-1.295 2.541

Exercise 2.1

When we generated the data, we did not use a constant term. The
model specified for estimation, however, did not exclude the con-
stant term. Repeat the estimation using the model without a con-
stant term. Compare the results.

17
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Example 2.2: Linear Model Summary

Input
summary(lm( y ~ x))

Output
Call:

lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max

-28.2790 -6.3290 0.8087 7.3920 28.3508

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.2947 1.9719 -0.657 0.513

x 2.5410 0.0339 74.958 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 9.785 on 98 degrees of freedom

Multiple R-squared: 0.9829, Adjusted R-squared: 0.9827

F-statistic: 5619 on 1 and 98 DF, p-value: < 2.2e-16

Exercise 2.2

Analyse the output of lm() shown in Example 2.2. Which of the
terms can you interpret? Write down your interpretations. For
which terms do you need more information?

Generate a commented version of the output.

2.2.3 Regression Diagnostics

Exercise 2.3

Let

yy <- 2.5*x +0.01 * x^2 + err

What are the results you get if you do a regression using the (in-
correct) regression model yy ∼x? Do you get any hints that this
model is not adequate?



19

Exercise 2.4

Use plot() to inspect the results of Exercise 2.3. Does it give
you indications that the linear model is not appropriate? Which
indications?

2.2.4 More Examples for Linear Models

2.2.5 Model Formulae

Exercise 2.5

Write the four models from Section 2.2.4 using the R formula no-
tation.

For each of these models, generate an example data set by simu-
lation, and apply lm() to the example. Compare the estimators
returned by lm() with the parameters you have used in the simu-
lations.

Exercise 2.6

Generate three vectors of random variables with an N(µj , 1) dis-
tribution, µj = j, j = 1, 3, 9, each of length 10, and combine these
into a vector y.

Generate a vector x with the values j, j = 1, 3, 9, each repeated 10
times.

Calculate the Gauss-Markov estimator in the linear models

y∼x and y∼factor(x).

Inspect the results as a table using summary() and graphically
using plot(). Compare the results, and give a written report.

2.2.6 Gauss-Markov Estimator
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Exercise 2.7

What is the distribution of |RX(Y )|2 = |Y − Ŷ |2, if ε has a
N(0, σ2I) distribution?

Exercise 2.8

Modify the output of plot.lm() for the linear model so that in-
stead of the Tukey-Anscombe plot the studentised residuals are
plotted against the fit.

∗ Enhance the QQ-Plot by Monte Carlo bands for independent nor-
mal errors.
Hint: You cannot generate the bands directly from a normal dis-
tribution — you need the distribution of the residuals, not the
distribution of the errors.

Exercise 2.9

Write a procedure that calculates the Gauss-Markov estimator for
the simple linear regression

yi = a+ bxi + εi with xi ∈ R, a, b ∈ R
and shows four plots:

• response against regressor, with estimated straight line

• studentised residuals against fit

• distribution function of the studentised residuals in a QQ plot
with confidence bands

• histogram of the studentised residuals

2.3 Variance Decomposition and Analysis of Variance

Exercise 2.10

What is the distribution of F , if E(Y ) ∈ MX ′ applies and ε is
distributed as N(0, σ2I)?
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Exercise 2.11

Give an explicit formula for the F statistics for analysis of variance
in the one-way layout

yij = µ+ αj + εij

in comparison to the homogeneous model

yij = µ+ εij .

The analysis of variance gives another representation and interpretation of linear models.
For example, the regression result from (Example ??) gives the following analysis of
variance representation:

Example 2.3: Linear Model ANOVA Summary

Input
summary(aov(lmres))

Output
Df Sum Sq Mean Sq F value Pr(>F)

x 1 538022 538022 5619 <2e-16 ***

Residuals 98 9384 96

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

anova() can be used to compute analysis of variance tables for one or more fitted model
objects.

Example 2.4: Linear Model ANOVA

Input
anova(lm(y~x), lm(y~0+x))

Output
Analysis of Variance Table

Model 1: y ~ x

Model 2: y ~ 0 + x

Res.Df RSS Df Sum of Sq F Pr(>F)

1 98 9384.0

2 99 9425.2 -1 -41.283 0.4311 0.513
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Exercise 2.12

Analyse the output of lm() shown in Example 2.2 (page 17). Which
terms can you interpret now? Give a written report. For which
terms do you need more information?

Exercise 2.13 One-Way Anova

∗ Write a function oneway() which takes a data table as an argument
and performs a one-way analysis of variance as a test on difference
between the columns.

∗ Enhance oneway() by adding the necessary diagnostic plots. Which
diagnostics are necessary?

Exercise 2.14 Kiwi Hopp

The industrial enterprise Kiwi Inc.1 wants to develop a new heli-
copter for the market. The helicopter design is rated by the time it
stays in air before it touches ground2 from a fixed starting height
(ca. 2m). Figure 2.1, page 26, shows a design drawing. What are
the factors that can affect the variability of the flight (sink) time?
What are the factors that can affect the mean flight duration?

Perform 30 test flights with a prototype and measure the time
in 1/100s. (You will have to cooperate in pairs to carry out the
measurements.) Would you consider the recorded times as normally
distributed?

The requirement is that the mean flight duration reaches at least
2.4s. Does the prototype satisfy the requirement?

Your task is to select a design for production. The variants under
discussion are:

rotor width 45mm

rotor width 35mm

rotor width 45mm with an additional fold for stabilisation

rotor width 35mm with an additional fold for stabilisation

(cont.)→

1 Following an idea of Alan Lee, Univ. Auckland, New Zealand.
2 Kiwis cannot fly.
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Exercise 2.14 Kiwi Hopp (cont.)

Your budget allows for about 40 test flights. (If you need more
test flights, you should give good arguments for this.) Build 4 pro-
totypes, perform the test flights and record the times. Find the
design that achieves maximum flight duration. Generate a report.
The report should contain the following details:

• a list of the observed data and a description of the experimental
procedure

• suitable plots of the data for each of the designs

• an analysis of variance

• a clear summary of your conclusions

Additional hints: Randomise the sequence of your experiments. Re-
duce the variation by providing uniform conditions for the experi-
ment (same height, same launch technique, etc.).

The fold will result in additional production cost. Give an estimate
of the gain that can be achieved by this additional cost.

2.4 Simultaneous Inference

2.4.1 Scheffé’s Confidence Bands

2.4.2 Tukey’s Confidence Intervals

Case Study: Titre Plates

2.5 Beyond Linear Regression

Transformations

2.5.1 Generalised Linear Models

Exercise 2.15

Write the normal densities in the exponential form (??). What is
the natural statistics? What is the natural parametrisation?
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2.5.2 Local Regression

2.6 R Complements

2.6.1 Complements: Discretisation

2.6.2 Complements: External Data

2.6.3 Complements: Testing Software

Exercise 2.16

For this series of exercises, let yi = a+bxi+εi with εi iid ∼ N(0, σ2)
and xi = i, i = 1, . . . , 10.

Choose a strategy to inspect lm() with regard to the parameter
space (a, b, σ2).

Are there apparent cellular decompositions for the parameters
a, b, σ2?

What are the trivial cases? What are the asymptotics that apply?

Choose test points in the interior of each cell and on the boundaries.

Perform these tests and summarise the results.

What are the symmetries/anti-symmetries that apply?

Check for these symmetries.

Which invariant or covariate behaviour applies?
Check for these invariant or covariate behaviour.

Exercise 2.17

For this series of exercises, let yi = a + bxi + εi with εi iid ∼
N(0, σ2).

What are the extremal designs (xi)? Check the behaviour of lm()
for four extremal designs.

Perform the tests from the last exercise, now with variable design.
Summarise your results.
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Exercise 2.18

For this series of exercises, let yi = a + bxi + εi with εi iid ∼
N(0, σ2).

Modify lm() to give a fail-safe function for simple linear models
that checks deviations from the model assumptions as well.

2.6.4 R Data Types

2.6.5 Classes and Polymorphic Functions

2.6.6 Extractor Functions

2.7 Statistical Summary

2.8 Literature and Additional References

[1] Chambers, J.M.; Hastie, T.J. (eds.) (1992): Statistical Models in S.
Chapman & Hall, New York.

[5] Jørgensen, B. (1993): The Theory of Linear Models.
Chapman & Hall, New York.

[8] R Development Core Team (2004–2008): The R language definition.

[10] Sawitzki, G. (1994): Numerical Reliability of Data Analysis Systems.
Computational Statistics & Data Analysis 18.2 (1994), 269–286.
<http://www.statlab.uni-heidelberg.de/reports/>.

[11] Sawitzki, G. (1994):Report on the Numerical Reliability of Data Analysis Systems.
Computational Statistics & Data Analysis/SSN 18.2 (1994) 289–301.
<http://www.statlab.uni-heidelberg.de/reports/>.

<http://www.statlab.uni-heidelberg.de/reports/>
<http://www.statlab.uni-heidelberg.de/reports/>
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CHAPTER 3

Comparisons

We begin with the construction of a small gadget that will provide us with example
data. The base is a reaction tester. We present a “random” point, wait for a mouse click
on that point and record the position of the mouse pointer. To get a stable image for
repeated activations, we fix the coordinate system.

Example 3.1: Interactive Location

Input
plot(x = runif(1), y = runif(1),

xlim = c(0, 1), ylim = c(0, 1),

main = "Please click on the circle",

xlab = '', ylab = '',
axes = FALSE, frame.plot = TRUE)

xclick <- locator(1)

●

Please click on the circle

Now we wrap up the base function in a timer. We record the coordinates, try to measure
the reaction time, and return the results as a list.

27
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Example 3.2: Click Timing

Input
click1 <- function(){

x <- runif(1);y <- runif(1)

plot(x = x, y = y, xlim = c(0, 1), ylim = c(0, 1),

main = "Please click on the circle",

xlab = '', ylab = '',
axes = FALSE, frame.plot = TRUE)

clicktime <- system.time(xyclick <- locator(1))

list(timestamp = Sys.time(),

x = x, y = y,

xclick = xyclick$x, yclick = xyclick$y,

tclick = clicktime[3])

}

For later processing we can integrate the list in a data.frame and extend this data.frame
stepwise using rbind.

Example 3.3: Sequential Recording

Input
dx <- as.data.frame(click1())

dx <- rbind(dx, data.frame(click1()))

dx

Output
timestamp x y xclick yclick tclick

elapsed 2014-04-23 21:54:22 0.9619 0.6249 0.9609 0.6250 1.944

elapsed1 2014-04-23 21:54:24 0.5477 0.2259 0.7410 0.4125 2.212

Exercise 3.1 Click Timing

Define a function click(runs) that repeats click1() a cho-
sen number runs plus one times and returns the result as a
data.frame. The additional first timing should be considered as
a “warming up” and is not included in the following evaluations.

Select a number runs. Give reasons for your choice of runs. Execute
click(runs) and store the result in a file using write.table().

Display the distribution of the component tclick with the me-
thods from Chapter 1 (distribution function, histogram, box-and-
whisker plot).
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3.1 Shift/Scale Families, and Stochastic Order

Exercise 3.2 Click Comparison

Perform Exercise 3.1 using the right hand and then again using the
left hand. Compare the empirical distributions of the timing data
returned by tclick() for the right and left hand.

The recorded data also contain information about the positions.
Define a distance measure dist for the deviation. Give reasons for
your definition. Perform a right/left comparison for dist.

For later analysis, store the results for the right hand and for the
left hand in files. named "clickright-xxxx" and " "clickright-

xxxx", where xxxx is an identification of you choice. For example,
use your initials, the date and some sequential number, such as in
"clickright-cs20050416-1".

We concentrate on the comparison of two distributions only, for example, that of the
results of two treatments. And we take a simple case: we assume that the observations are
independent and identically distributed for each treatment. We use the index notation
that is usual for the comparison of treatments in the two sample case.

Yij independent identically distributed with distribution function Fi

i = 1, 2 treatments

j = 1, . . . , ni observations in treatment group i.
How do we compare the observations in the treatment groups i = 1, 2? The (simple)
linear models

Yij = µ+ αi + εij

consider only the case where the difference amounts to a shift ∆ = α1 − α2.

Notation: For a distribution with distribution function F the family

Fa(x) = F (x− a)

is called the shift family for F . The parameter a is called the shift or location param-
eter.

Speaking in terms of probabilities, the treatment can shift probability mass in quite
different ways from what can be achieved by an additive shift term. We need more
general ways to compare distributions. Shift families are not the only framework to
consider.

Notation: A distribution with distribution function F1 is stochastically smaller than
a distribution with distribution function F2 (in symbols, F1 ≺ F2), if a variable dis-
tributed as F1 takes rather smaller values than a variable distributed as F2. This means
that F1 increases sooner.

F1(x) ≥ F2(x) ∀x
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and
F1(x) > F2(x) for at least one x.

For shift families we have: If a < 0, then Fa ≺ F . The shift results in a parallel shift of
the distribution functions.

A typical result of the click comparison experiment (Exercise 3.2) is given in Figure 3.1.
The response times for the right side are stochastically smaller than those for the left
side. But the distributions do not belong to a common shift family, since the distribution
functions are not parallel.
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Figure 3.1 Distribution functions for the right/left click time (samples from one person).

Exercise 3.3 Stochastic Order

What does a PP plot for F1 against F2 look like if F1 ≺ F2?

What does a QQ plot for F1 against F2 look like if F1 ≺ F2?
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Exercise 3.4

The scale shift family for the N(0, 1) distribution are the N(µ, σ2)
distributions. Which N(µ, σ2) distributions are stochastically
smaller than the N(0, 1) distribution? Which are stochastically
larger? Which distributions have an undefined order relation to
N(0, 1)?

3.2 QQ Plot, PP Plot, and Comparison of Distributions

Exercise 3.5

Use the QQ plot to compare the results of the right/left click

experiments. Summarise the results.

Combine the right/left tclick data to a vector. Compare the QQ
plot with that of Monte Carlo samples taken from the joined vec-
tor.
Hint: You can draw random samples with sample(). With
par(mfrow = c(2, 2)) you arrange the display area so that it
shows four plots at a time.

** For sample() use replace = FALSE. How do you have to apply
sample() now to split the joint vector into two vectors with Monte
Carlo samples? What differences do you expect in comparison to
replace = TRUE?

Exercise 3.6

Find scale and shift parameters for the right/left click data so
that, after using these parameters for transformation, the groups
match as well as possible. Describe the differences using these pa-
rameters. Use a model formulation in terms of a linear model.

Use the function boxplot() to display quartiles and tail behaviour.

Compare the information with the information you derived from
the scale and shift parameters.

Hint: What corresponds to the shift (or location) parameter? What
corresponds to the scale parameter?

If representations such as visual representations in displays or numeric representations
in summary statistics are affine invariant, scale and shift parameters can be ignored.
If representations are not affine invariant, it is often helpful to estimate scale and shift
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parameters first, then standardise the distributions, and only then to inspect the stan-
dardised distributions.

The potential problem with this is that we have to take into account the stochastic
behaviour of the scale and shift parameter estimation. The usual way out is to be
cautious and use “conservative” tests and robust estimators. The following function tries
to transform scale and location to match a standard normal distribution.

ScaleShiftStd <- function (x) {

xq <- quantile(x[!is.na(x)], c(0.25, 0.75))

y <- qnorm(c(0.25, 0.75))

slope <- diff(y)/diff(xq)

(x-median(x, na.rm = FALSE)) * slope

}

Exercise 3.7 Scale/Shift Standardisation

This algorithm is only appropriate for symmetric distributions.

Combine it with a power transformation as in Section 2.5 (page 23)
to symmetrise a distribution and give an algorithm that can be
applied to asymmetric transformations.

Exercise 3.8 Two-Sample Monte Carlo Bands

∗ Modify the functions for the PP plot and the QQ plot so that
Monte Carlo bands for the comparison of two samples are added.
(Use a scale/shift standardisation for the PP plot.)

For the bands, you can use an overlay of line plots.

Hint: Use the function sample() to generate random permutations.

Exercise 3.9

∗∗ Augment the PP plot and QQ plot for the click experiments by
permutation bands that cover 95% of the permutations.

∗∗ Generate new plots from the PP plots and QQ plots by adding
Monte Carlo bands from permutations. Use an envelope of 19
Monte Carlo samples.

Hint: Use function sample() to draw a random sample of sample
size n1 from x = (Y11, . . . , Y1n1

, Y12, . . . , Y1n2
).

Hint: See help(sample).
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Exercise 3.10

∗ Try to compare the properties of permutation bands, Monte Carlo
bands and bootstrap bands on the hypothesis where F1 = F2.

If not the distributions, but only single specified parameters are to be compared, an
analogous strategy can be used. For example, if we focus on shift alternatives (that is
F1 and F2 are from a shift family, F1(x) = F2(x− a) for some a, we can take the mean
(or the median) as the parameter of interest. The procedure given above can be used
analogously to test the hypothesis that the distributions are not different (a = 0), based
on the data.

Exercise 3.11

∗ Formulate the strategies given above for intervals of single test
statistic (example: mean) instead of bands.

Hint: Instead of the two mean values for both groups, can you use
a single one-dimensional statistic?

3.2.1 Kolmogorov-Smirnov Tests

We also can use simulation to determine bands. In contrast to the one-sample case we
do not have a given distribution from which to simulate. Under the hypothesis that
the distributions F and G do not differ for independent observations the joined vector
(X1, . . . , Xn, Y1, . . . , Ym) is the vector of n + m independent random numbers with
identical distribution F = G. Given a data set, this relation can be used for simulation.
Using a permutation π of the indices from the vector Z = (X1, . . . , Xn, Y1, . . . , Ym) a
new vector Z ′ with Z ′i = Zπ(i) is generated. The first n components are used as simulated
values (X ′i)i=1,...,n, the remaining m components as simulated values (Y ′j )j=1,...,m.

Exercise 3.12

∗ Implement this algorithm and enhance the PP plot by adding simu-
lated PP plots generated by a small number (19?) of permutations.

Determine the permutation distribution of sup |Fn−Gm| from the
simulation and calculate this statistic for the original data. Can
you use this comparison to define a test procedure?

The Kolmogorov-Smirnov test as implemented uses an approxima-
tion for the two-sample case. In our simulation we know that we
simulate under the hypothesis. So any rejection we get is a false
rejection, i.e., an error. Inspect the distribution of the error level
under the simulated conditions.



34

Exercise 3.13

Use the QQ plot for a pair-wise comparison of the results of the
helicopter experiment from Chapter 2. Summarise your results.

Exercise 3.14

Inspect the implementation of qqnorm(). Implement an analogous
function for the PP plot and apply it to the helicopter data.

3.3 Tests for Shift Alternatives

Exercise 3.15

* Use a simulation to inspect the distribution of Y , ̂V ar (Y ) and the
t statistic for Y from a uniform distribution U [0, 1] with sample
size n = 1, . . . , 10. Compare the distributions from the simulation
with the corresponding normal, χ2 resp. t distribution.

Use a simulation to inspect the distribution of Y , ̂V ar (Y ) and
the t statistic for Y from a mixture, consisting at 90% from an
N(0, 1)- and at 10% from an N(0, 10) distribution, with sample
size n = 1, . . . , 10. Compare the distributions from the simulation
with the corresponding normal, χ2 resp. t distribution.

Exercise 3.16

Use the Wilcoxon test to compare the results of the right/left click
experiment.

Use both variants, the approximative test wilcox.test() and the
exact Wilcoxon test wilcox_test() .
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Exercise 3.17 Click Project

*** In the the right/left click experiment several effects contribute to
the response time. Some problems:

• The response time comprises reaction time, time for the large
scale movement of the mouse, time for fine adjustment, etc.

• For the right/left movement in general a swivel of the hand is
sufficient. For forward/backward movement in general a move-
ment of the arm is necessary. It is not to be expected that both
movements have a comparable statistical behaviour.

• Subsequent records may be affected by a training effect, or by a
tiring effect.

Can you modify the experiment or the evaluation so that differences
in the reaction time components can be investigated?
Can you modify the experiment or the evaluation so that differences
in the precision of the position of the click can be investigated?

*** Inspect and document for yourself the right/left differences in re-
action time and precision. Summarise your results as a report.

Exercise 3.18 Power Comparison

Use the shift/scale families of N(0, 1) and t(3) and design a setting
to compare the performance of the Wilcoxon test with that of the
t-test for each of these families.

Perform the comparison in a simulation with sample sizes n1 =
n2 = 10, 20, 50, 100 and summarise your results.

Do an analogous comparison using simulation data from the log-
normal distribution.

3.4 A Road Map

3.5 Power and Confidence

3.5.1 Theoretical Power and Confidence

3.5.2 Simulated Power and Confidence

3.5.3 Quantile Estimation
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Exercise 3.19 Interquartile Interval

Write a function that calculates the coverage probability n 7→
P(med(X) ∈ IQ) where IQ is the empirical interquartile interval.

Hint: Use (??).

What is the minimal sample size so that the interquartile box covers
the median with at least 90% confidence?

3.6 Qualitative Features of Distributions

3.7 Statistical Summary

3.8 Literature and Additional References

[14] William N. Venables and Brian D. Ripley, B (2002): Modern Applied Statistics with
S.
Springer, Heidelberg.

[13] William N. Venables, W.N.; and Brian D. Ripley (2000): S Programming.
Springer, Heidelberg.

[7] Rupert G. Miller (1981): Simultaneous Statistical Inference.
Springer, Heidelberg.
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CHAPTER 4

Dimensions 1, 2, 3, . . . , ∞

4.1 R Complements

4.2 Dimensions

4.3 Selections

4.4 Projections

4.4.1 Marginal Distributions and Scatter Plot Matrices

Exercise 4.1

Generate a scatterplot matrix for the diabetes data set that shows
a histogram of the variables in the diagonal panels.

Hint: See help(pairs).

4.4.2 Projection Pursuit

Input
library("lattice")

diabcloud <- function(y, where, more = TRUE, ...) {

print(cloud(ga ~ ina + sspg, data = chemdiab, groups = cc,

screen = list(x = -90, y = y), distance = .4, zoom = .6,

auto.key = TRUE, ...),

split = c(where, 3, 2), more = more)

}

supsym <- trellis.par.get("superpose.symbol")

supsymold <- supsym

supsym$col = c("magenta", "green3", "cyan")

trellis.par.set("superpose.symbol" = supsym)

diabcloud(y = 70, where = c(1, 1))

diabcloud(y = 40, where = c(2, 1))

diabcloud(y = 10, where = c(3, 1))

37
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diabcloud(y = -20, where = c(1, 2))

diabcloud(y = -50, where = c(2, 2))

diabcloud(y = -80, where = c(3, 2), more = FALSE)

trellis.par.set("superpose.symbol" = supsymold)

rm(diabcloud, supsymold, supsym)
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See Colour Figure ??.

Exercise 4.2

Modify this example so that you get an impression of the three-
dimensional structure. Try to use an animated sequence. You can
use sys.wait() if it is available on your system to control the time
sequence, or use devAskNewPage() to give interactive control for
new images.

What is the difference between open diabetes and chemical dia-
betes?

How does the normal group compare to both diabetes groups?
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4.4.3 Projections for Dimensions 1, 2, 3, . . . 7

4.4.4 Parallel Coordinates

Exercise 4.3

For the chemdiab data set, prepare a (written!) report about the
relation between the variables that you can recognise in the parallel
coordinate plot.

Instead of using chemdiab[2:5] you can specify the variables ex-
plicitly as chemdiab[c(2, 3, 4, 5)]. This gives you control over
the order of the variables. Compare two different sequences of the
variables and note (in writing!) your observations.

Which sequence of variables gives the simpler display?

Which relations between the variables are visible in both?

Which relations appear only in one of the arrangements?

4.5 Sections, Conditional Distributions and Coplots

From an abstract point of view, sections are conditional distributions of the type P ( · |
X = x). But they are only reliable where the section defines a condition that has positive
probability. To make the idea of restricting the view on conditional distributions appli-
cable to data, we thicken the sections. Instead of considering conditional distributions
of the type P ( · | X = x) we consider P ( · | ‖X − x‖ < ε), where ε possibly can vary
with x. In graphical representations of data this requires a series of plots showing only
the part of the data set specified by the condition.

Statistically, projections lead to marginal distributions and sections to conditional distri-
butions. In a certain sense, sections and projections are complementary: projections show
structural features of low dimension. Sections are helpful to detect structural features of
low codimension. For data analysis, both can be combined. The interplay of projections
and sections is discussed in [2]. Like the dimension boundaries for projections there are
boundaries for the codimension when using sections. We can only catch structures of
small codimension. If the codimension is too large, a typical section is empty, hence it
has no information.

As a first tool, R provides the possibility to analyse two variables conditioned on one
or more additional variables. As a graphical display coplot() serves for this purpose. It
is a variant of the plot matrix and shows in each panel the scatterplot of two variables,
given the condition.

The coplot can be inspected for patterns. If the variables shown are stochastically in-
dependent of the conditioning variables, all plot elements show the same shape. The
variables shown and the conditioning variables can then be de-coupled.
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If the general shape coincides, but location and size vary, this hints at a (not necessarily
linear) shift/scale relation. Additive models or variants of these can be used to model
the relation between the variables shown and conditioning variables.

If the shape changes with varying condition, a major dependency structure or interaction
may apply that needs more precise modelling.
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help(coplot)

coplot Conditioning Plots

Description

This function produces two variants of the conditioning plots discussed in the
reference below.

Usage

coplot(formula, data, given.values, panel = points, rows, columns,

show.given = TRUE, col = par("fg"), pch = par("pch"),

bar.bg = c(num = gray(0.8), fac = gray(0.95)),

xlab = c(x.name, paste("Given :", a.name)),

ylab = c(y.name, paste("Given :", b.name)),

subscripts = FALSE,

axlabels = function(f) abbreviate(levels(f)),

number = 6, overlap = 0.5, xlim, ylim, ...)

co.intervals(x, number = 6, overlap = 0.5)

Arguments

formula a formula describing the form of conditioning plot. A formula of
the form y ~ x | a indicates that plots of y versus x should be
produced conditional on the variable a. A formula of the form y

~ x| a * b indicates that plots of y versus x should be produced
conditional on the two variables a and b.

All three or four variables may be either numeric or factors. When
x or y are factors, the result is almost as if as.numeric() was ap-
plied, whereas for factor a or b, the conditioning (and its graphics
if show.given is true) are adapted.

data a data frame containing values for any variables in the formula.
By default the environment where coplot was called from is used.

given.values a value or list of two values which determine how the conditioning
on a and b is to take place.

When there is no b (i.e., conditioning only on a), usually this is a
matrix with two columns each row of which gives an interval, to
be conditioned on, but is can also be a single vector of numbers
or a set of factor levels (if the variable being conditioned on is a
factor). In this case (no b), the result of co.intervals can be
used directly as given.values argument.
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panel a function(x, y, col, pch, ...) which gives the action to be
carried out in each panel of the display. The default is points.

rows the panels of the plot are laid out in a rows by columns array.
rows gives the number of rows in the array.

columns the number of columns in the panel layout array.

show.given logical (possibly of length 2 for 2 conditioning variables): should
conditioning plots be shown for the corresponding conditioning
variables (default TRUE).

col a vector of colors to be used to plot the points. If too short, the
values are recycled.

pch a vector of plotting symbols or characters. If too short, the values
are recycled.

bar.bg a named vector with components "num" and "fac" giving the
background colors for the (shingle) bars, for numeric and factor
conditioning variables respectively.

xlab character; labels to use for the x axis and the first condi-
tioning variable. If only one label is given, it is used for the
x axis and the default label is used for the conditioning
variable.

ylab character; labels to use for the y axis and any second
conditioning variable.

subscripts logical: if true the panel function is given an additional
(third) argument subscripts giving the subscripts of the
data passed to that panel.

axlabels function for creating axis (tick) labels when x or y are
factors.

number integer; the number of conditioning intervals, for a and b,
possibly of length 2. It is only used if the corresponding
conditioning variable is not a factor.

overlap numeric < 1; the fraction of overlap of the conditioning
variables, possibly of length 2 for x and y direction. When
overlap < 0, there will be gaps between the data slices.

xlim the range for the x axis.

ylim the range for the y axis.

... additional arguments to the panel function.

x a numeric vector.

Details

In the case of a single conditioning variable a, when both rows and columns are
unspecified, a ‘close to square’ layout is chosen with columns >= rows.
In the case of multiple rows, the order of the panel plots is from the bottom and
from the left (corresponding to increasing a, typically).
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A panel function should not attempt to start a new plot, but just plot within a given
coordinate system: thus plot and boxplot are not panel functions.
The rendering of arguments xlab and ylab is not controlled by par arguments
cex.lab and font.lab even though they are plotted by mtext rather than title.

Value

co.intervals(., number, .) returns a (number× 2) matrix, say ci, where ci[k,]
is the range of x values for the k-th interval.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds
J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.
Cleveland, W. S. (1993) Visualizing Data. New Jersey: Summit Press.

See Also

pairs, panel.smooth, points.

Examples

## Tonga Trench Earthquakes

coplot(lat ~ long | depth, data = quakes)

given.depth <- co.intervals(quakes$depth, number = 4, overlap = .1)

coplot(lat ~ long | depth, data = quakes, given.v = given.depth, rows = 1)

## Conditioning on 2 variables:

ll.dm <- lat ~ long | depth * mag

coplot(ll.dm, data = quakes)

coplot(ll.dm, data = quakes, number = c(4, 7), show.given = c(TRUE, FALSE))

coplot(ll.dm, data = quakes, number = c(3, 7),

overlap = c(-.5, .1)) # negative overlap DROPS values

## given two factors

Index <- seq(length = nrow(warpbreaks)) # to get nicer default labels

coplot(breaks ~ Index | wool * tension, data = warpbreaks,

show.given = 0:1)

coplot(breaks ~ Index | wool * tension, data = warpbreaks,

col = "red", bg = "pink", pch = 21,

bar.bg = c(fac = "light blue"))

## Example with empty panels:

with(data.frame(state.x77), {

coplot(Life.Exp ~ Income | Illiteracy * state.region, number = 3,

panel = function(x, y, ...) panel.smooth(x, y, span = .8, ...))

## y ~ factor -- not really sensible, but 'show off':
coplot(Life.Exp ~ state.region | Income * state.division,
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panel = panel.smooth)

})

Exercise 4.4 Earthquakes

Analyse the “quakes” data set.
Summarise your results in a report.
Try to specify a formal model.

How is the geographic position related to the depth?

Can you identify relations between depth and magnitude of the
earthquake? (You may have to choose a different model formula
for the plots.)
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4.6 Transformations and Dimension Reduction

Exercise 4.5 Iris Classification

Use the methods from Section 4.4 and 4.5 to inspect the data set.
Can you see classification rules that give a classification of the three
species to a large extent?

4.7 Higher Dimensions

4.7.1 Linear Case

Partial Residuals and Added Variable Plots

Exercise 4.6 Added Variables

Modify the following function pairslm() so that it calculates the
residuals of the regression of all original variables in matrix x by
regression after the new variable x$fit, and produces a scatterplot
matrix of these residuals.

pairslm <- function(model, x, ... )

{ x$fit <- lm(model, x)$fit

pairs(x, ...) }

Add title, legends, etc.

Use the “trees” data set as an example.

4.7.2 Non-Linear Case

Example: Cusp Non-Linearity

4.7.3 Case Study: Melbourne Temperature Data

4.7.4 Curse of Dimensionality

4.7.5 Case Study: Body Fat
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Exercise 4.7

Use functions plot() , identify() , and text.id() to generate
the following output:
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Exercise 4.8

* Use

library(leaps)

lm.reg <- regsubsets(body.fat ~ age + BMI + neck +

chest + abdomen + hip + thigh + knee + ankle +

bicep + forearm + wrist + weightkg + heightcm,

data = fat)

and inspect the result with

summary(lm.reg)

plot(lm.reg, scale = "r2")

plot(lm.reg, scale = "bic"

plot(lm.reg, scale = "Cp")

Hint: See help(plot.regsubsets).

* Use the function leaps() for model selection.
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Exercise 4.9

Remove the obvious outliers and rearrange the variables starting
from the body volume so that on average the correlation between
subsequent variables is maximized.

Exercise 4.10 Think !

Draw a sketch of a member doll that shows which body geometry
features are represented by the next principal component PC4, . . . ,
PC10.
For a start, you can concentrate on the signs of the variable weights.

Exercise 4.11

* Extend the variables by other volume-related variables in the model
given above. Do you gain precision?

** Try to include the variable age in the model. How exactly do you
include age in the model?

** The function mvr() in library(pls) [15] is available to perform
a regression based on principal components. Use this function for
regression. What is the difference between this estimation and the
usual least squares regression?

For model construction, we used only the training part of the data. The quality of the
model derived now can be checked using the evaluation part. This can be done using
function predict.lm() , which applies a model estimated with lm() to a new data set
with analogous structure, for example:

Input
fat.eval <- fat[fat$train == FALSE, ]

pred <- predict.lm(lm.volf, fat.eval, se.fit = TRUE)

Exercise 4.12

* Estimate the precision of the model using the evaluation part of
the data.

* Carry out a regression diagnostics of the model derived, using the
evaluation part of the data.
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4.8 High Dimensions

4.9 Statistical Summary
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Subject Index

conditioned, 39

data features, 36
data types, 25
distribution

Gaussian, 31
distribution function, 2

factor, 17
function, 12

histogram, 2, 6

interactive, 27, 38

lattice, 37

model
formula, see Wilkinson-Rogers notation
generalised linear, 23
linear, 17, 19, 29

moment, 8
Monte Carlo, 3, 20, 31

plot
box-and-whisker, 11
coplot, 39
histogram, 2, 6
PP , 31
QQ, 31
Tukey-Anscombe, 20

polymorphic, 25
power, 35

quantile, 8, 35
quartile, 31

regression

non-linear, 23
principal component, 47

robust, 32

samples
Monte Carlo, 31

shift family, 29
simulation, 35
stochastically smaller, 29

Wilkinson-Rogers notation, 19
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