Computational Statistics

An Introduction to

Günther Sawitzki

CRC CRC Press
A CHAPMAN \& HALL BOOK

Computational Statistics

An Introduction to

Exercises

April 30, 2014 DRAFT

Günther Sawitzki
StatLab Heidelberg
April 30, 2014
in preparation
http://sintro.r-forge.r-project.org/

Contents

1 Basic Data Analysis 1
1.1 R Programming Conventions 1
1.2 Generation of Random Numbers and Patterns 1
1.2.1 Random Numbers 1
1.2.2 Patterns 1
1.3 Case Study: Distribution Diagnostics 2
1.3.1 Distribution Functions 2
1.3.2 Histograms 2
Barcharts 2
1.3.3 Statistics of Distribution Functions; Kolmogorov-Smirnov Tests 2
Monte Carlo Confidence Bands 3
1.3.4 Statistics of Histograms and Related Plots; χ^{2}-Tests 6
1.4 Moments and Quantiles 8
1.5 R Complements 11
1.5.1 Random Numbers 11
1.5.2 Graphical Comparisons 11
1.5.3 Functions 12
Vectorisation 13
Compilation 13
1.5.4 Enhancing Graphical Displays 13
1.5.5 R Internals 13
Executing Files 13
1.5.6 Search Paths, Frames and Environments 13
1.6 Additional Exercises 13
1.6.1 Packages 15
Using Packages 15
Building Packages 15
Compilation 15
1.7 Statistical Summary 15
1.8 Literature and Additional References 15
2 Regression 17
2.1 General Regression Model 17
2.2 Linear Model 17
2.2.1 Factors 17
2.2.2 Least Squares Estimation 17
2.2.3 Regression Diagnostics 18
2.2.4 More Examples for Linear Models 19
2.2.5 Model Formulae 19
2.2.6 Gauss-Markov Estimator 19
2.3 Variance Decomposition and Analysis of Variance 20
2.4 Simultaneous Inference 23
2.4.1 Scheffé's Confidence Bands 23
2.4.2 Tukey's Confidence Intervals 23
Case Study: Titre Plates 23
2.5 Beyond Linear Regression 23
Transformations 23
2.5.1 Generalised Linear Models 23
2.5.2 Local Regression 24
2.6 R Complements 24
2.6.1 Discretisation 24
2.6.2 External Data 24
2.6.3 Testing Software 24
2.6.4 R Data Types 25
2.6.5 Classes and Polymorphic Functions 25
2.6.6 Extractor Functions 25
2.7 Statistical Summary 25
2.8 Literature and Additional References 25
3 Comparisons 27
3.1 Shift/Scale Families, and Stochastic Order 29
3.2 QQ Plot, PP Plot, and Comparison of Distributions 31
3.2.1 Kolmogorov-Smirnov Tests 33
3.3 Tests for Shift Alternatives 34
3.4 A Road Map 35
3.5 Power and Confidence 35
3.5.1 Theoretical Power and Confidence 35
3.5.2 Simulated Power and Confidence 35
3.5.3 Quantile Estimation 35
3.6 Qualitative Features of Distributions 36
3.7 Statistical Summary 36
3.8 Literature and Additional References 36
4 Dimensions 1, 2, 3, ..., ∞ 37
4.1 R Complements 37
4.2 Dimensions 37
4.3 Selections 37
4.4 Projections 37
4.4.1 Marginal Distributions and Scatter Plot Matrices 37
4.4.2 Projection Pursuit 37
4.4.3 Projections for Dimensions 1, 2, 3, .. 7 39
4.4.4 Parallel Coordinates 39
4.5 Sections, Conditional Distributions and Coplots 39
4.6 Transformations and Dimension Reduction 45
4.7 Higher Dimensions 45
4.7.1 Linear Case 45
Partial Residuals and Added Variable Plots 45
4.7.2 Non-Linear Case 45
Example: Cusp Non-Linearity 45
4.7.3 Case Study: Melbourne Temperature Data 45
4.7.4 Curse of Dimensionality 45
4.7.5 Case Study: Body Fat 45
4.8 High Dimensions 48
4.9 Statistical Summary 48
viii
References 49
Functions and Variables by Topic 51
Function and Variable Index 51
Subject Index 51

CHAPTER 1

Basic Data Analysis

1.1 R Programming Conventions

1.2 Generation of Random Numbers and Patterns

1.2.1 Random Numbers

Exercise 1.1	
	Try experimenting with these plots and runif(). Do the plots show images of random numbers? To be more precise: do you accept these plots as images of 100 independent realisations of random numbers, distributed uniformly on (0, 1)? Repeat your experiments and try to note as precisely as possible the arguments you have for or against (uniform) randomness. What is your conclusion? Walk through your arguments and try to draft a test strategy to analyse a sequence of numbers for (uniform) randomness. Try to formulate your strategy as clearly as possible.
Hint: For comparison, you can keep several plots in a window. The code corametrises the graphics system to show six plots simultaneously, arranged row wise as a 2×3 matrix (2 rows, 3 columns). The function par is the central function to control graphics param- eters. For more information, see help(par).	

1.2.2 Patterns

Exercise 1.2	
	Use $\quad \operatorname{plot}(\sin (1: 100))$
	to generate a plot of a discretised sine function. Use your strategy from Exercise 1.1. Does your strategy detect that the sine function is not a random sequence? Hint: If you do not recognise the sine function at first sight, use plot (sin $(1: 100)$, type $=" 1 ")$ to connect the points.

1.3 Case Study: Distribution Diagnostics

1.3.1 First Pass for Example ??: Distribution Functions

1.3.2 First Pass for Example ??: Histograms

Exercise 1.3	
Use runif (100) to draw random numbers and generate histograms with $5,10,20,50$ cells of equal size. Use repeated samples. Do the histogram plots correspond to what you expect from inde- pendent uniform random variates? Try to note your observations in detail. Repeat the experiment with two cells $(0,0.5],(0.5,1)$. hist (runif(100), breaks $=c(0,0.5,1))$	

Exercise 1.4

Modify Example ?? (page ??) to include the kernel name and the bandwidth used in the kernel density estimation.
You have to store the result from density() and access its components in analogy to Example ?? (page ??).

Barcharts

1.3.3 Statistics of Distribution Functions; Kolmogorov-Smirnov Tests

Exercise 1.5

Using help (rbeta) you get information about the functions available to work with beta distributions. Generate plots for the densities of the beta distribution for $n=16,32,64,128$ and $i=$ $n / 4, n / 2,3 n / 4$. Use the function curve() to generate the plots. For more information, see help(curve).

Exercise 1.6	
	Draw the distribution function with the corrected reference line.
$*$	We use the graphical display for a single sample, not for a run of samples. Is the expected value of $X_{(i)}$ an adequate reference? Are there alternatives that can serve as references? If you see alternatives, give an implementation.

Monte Carlo Confidence Bands

Exercise 1.7

Make use of the help()-function and comment on Example 1.1 step by step. Take special note of the new functions that are introduced here.

R Iterators

R Iterators (cont.)	
apply()	applies a function to the rows or columns of a matrix. Example: samples <- apply (samples, 2, sort) sorts by column.
outer()	generates a matrix of all pair-wise combinations of two vectors, and applies a function to all pairs.

Exercise 1.8	
*	Why $19 ?$
	Hint: Try to take an abstract simplified view of the problem first: let T be a measurable function and $X_{0}, X_{1}, \ldots, X_{\text {nrsamples inde- }}$ pendent samples with a common distribution function.
	What is $P\left(T\left(X_{0}\right)>T\left(X_{i}\right)\right)$ for all $i>0 ?$ In a second step, give an abstract formulation for the example above. Then consider the special case nrsamples $=19$.

Exercise 1.9 \quad Monte Carlo Coverage

$*$	Estimate the coverage probability of the Monte Carlo band by first generating a band as above. (How can you draw the band without first making a plot for a special sample?) Next, generate sim simulation samples of uniform random numbers of sample size 100. Count how many simulations give a sample within the band. You have to make your choice of the number sim of simulations (100? 1000? 999?) for this step. Use this information to estimate the coverage probability. Hint: any () can be used to evaluate a comparison for a full vector.

Theorem 1.1 For all integer n and any positive λ, we have

$$
P\left(\sqrt{n} \sup \left|F_{n}-F\right|>\lambda\right) \leq 2 e^{-2 \lambda^{2}}
$$

Proof. [6], Corollary 1
This inequality is valid even if F is not continuous.

Exercise 1.10	Finite Sample Bounds
	Use the inequality given in Theorem 1.1 to calculate bounds for \sqrt{n} sup $\left\|F_{n}-F\right\|$.
	Add finite sample bands to the empirical distribution function.

Exercise 1.11	
	Using help(ks.test) you get information on how to invoke the function ks.test. Which results do you expect if you test the following vectors for a uniform distribution?
$\qquad$$1: 100$ $\operatorname{runif}(100)$ $\sin (1: 100)$ rnorm(100)	
	Perform these tests and discuss the results. For the test, scale the values so that they fall into the interval $[0,1]$, or use a uniform distribution on an interval that is adapted to the data.

1.3.4 Statistics of Histograms and Related Plots; χ^{2}-Tests

Exercise 1.12

Use help(chisq.test) to see the calling structure for χ^{2} tests. Apply it to test the hypothesis $\left(p_{j}=1 / J\right), J=5$ on the following vectors of bin counts:

$$
(33333) \quad(12533) \quad(00906) .
$$

Exercise 1.13	
	Which results do you expect if you use a χ^{2} test to check the following vectors for a uniform distribution? $1: 100$ runif(100)
	(cont.) \rightarrow

Exercise 1.13	(cont.)
	$\sin (1: 100)$ rnorm(100)
	Perform these tests and discuss the results.
Hint: The function chisq.test () expects a frequency table as input. The function table() can be used to generate a frequency table directly (see help (chisq.test)). But you can also use the function hist(), which gives counts as one component of its result.	

Exercise 1.14

$*$	Sketch comparable test environments for fixed and adaptive choice of histogram cells. For fixed and for adaptive choice of histogram cells draw $s=1000$ samples of size 50 from runif(). Calculate in both settings the formal χ^{2} statistics and plot its distribution functions. Compare the distribution functions.

Exercise 1.15

For $n=10,50,100$, draw 300 samples using runif (n). For each sample, calculate the χ^{2} and the Kolmogorov-Smirnov statistic.
You have to choose a χ^{2} test. What is your choice?
Plot the distribution functions of these statistics and compare them to the theoretical (asymptotic) distributions.
Are there any indications against the assumption of independent uniform random numbers?
Hint: The functions for the χ^{2} and Kolmogorov-Smirnov test keep their internal information as a list. To get the names of the list elements, you can create a sample object. For example, use

```
names(chisq.test(runif(100))).
```

Exercise 1.16	
$* *$	Analyse the power of the Kolmogorov-Smirnov test and the χ^{2} tests. Select values for n, m and α, and choose 9 pairs for (a, b). What are your arguments for your choices? Use your chosen parameters to draw samples from rbeta(). Apply the Kolmogorov-Smirnov test and a χ^{2} test with 10 cells of equal size on $(0,1)$.
	Choose alternative parameters (a, b) so that you can compare the decision rules along the following lines: i) a $=\mathrm{b}$ ii) b $=1$ iii) a $=1$ and run these simulations.
Choose alternative parameters (a, b) so that you can compare the decision rules over the range $0<a, b<5$. Your conclusions? Hint: outer (x, y, fun) applies a function fun() to all pairs of values from x, y and returns the result as a matrix. Using	
you can generate a contour plot. See demo ("graphic").	

Exercise 1.17	
$\star \star$	Design a test strategy to unmask "pseudo-random numbers". iest this strategy using simple examples ii) $\sin (x) x=1 . .100 \bmod m$ for convenient m iii) \ldots Do you tag these sequences as "not random"? Now try to unmask the random number generators provided by R. Can you identify the generated sequences as "not random"?

1.4 Moments and Quantiles

Exercise 1.18

Generate a sample of random variables with sample size 100 from the distributions with the following densities:

$$
p(x)= \begin{cases}0 & x<0 \\ 1 & 0 \leq x \leq 1 \\ 0 & x>1\end{cases}
$$

and

$$
p(x)= \begin{cases}0 & x \leq 0 \\ 2 & 0<x \leq 1 / 4 \\ 0 & 1 / 4<x \leq 3 / 4 \\ 2 & 3 / 4<x \leq 1 \\ 0 & x>1\end{cases}
$$

Estimate the mean, variance and standard deviation in each of these.
Repeat the estimation for 1000 samples. Analyse the distribution of estimated mean, variance and standard deviation for repeated samples.

Exercise 1.19

Generate a sample of 100 random variables from the distributions of Exercise 1.18.
Estimate the median, and the lower and upper quartiles.
Repeat the estimation for 1000 samples. Analyse the distribution of the estimated median, lower and upper quartiles from repeated samples.

```
Example 1.2: Box-and-Whisker Plot
oldpar <- par(mfrow = \(c(1,4)\) ) Input
boxplot(runif(100), main = "uniform")
boxplot(rnorm(100), main = "normal")
boxplot(exp(rnorm(100)), main = "lognormal")
boxplot(rcauchy(100), main = "cauchy")
par(oldpar)
```

\qquad

Exercise 1.20

Modify Example 1.2 so that the plots are comparable: adjust the location so that the medians are at the same height. Adjust the scales so that the inter-quartile ranges have same length.

Exercise 1.21	
	For continuous distributions and the median $X_{\text {med }}$ we have $P\left(X_{i} \geq X_{m e d}\right)=0.5$ Hence we can find a k such that $k=\min \left\{k: P\left(X_{(k)} \leq X_{m e d}\right)<\alpha\right\}$ and $X_{(k)}$ as an upper bound for the median with confidence level $1-\alpha$. Use this idea to construct a confidence interval for the median with confidence level $1-\alpha=0.9$.
	Modify the box-and-whisker plot to show this interval. $(\text { cont.) } \rightarrow$

Exercise 1.21	(cont.)
	Hint: You need the distribution function F_{X}, evaluated at the position marked by the order statistic $X_{(k)}$. $F_{X}\left(X_{(k)}\right)$ are discussed in Theorem ??
	The box-and-whisker plot offers an option notch = TRUE to mark confidence intervals. Try to use the documentation to find out how a notch is calculated. Compare your confidence intervals with those marked using notch.
$*$	Use an analogous strategy to get a distribution-independent confi- dence interval for the inter-quartile range.
$* * *$	Augment the box-and-whisker plot so that it gives information about the scale in a way that is statistically reliable. Hint: Why is it not sufficient to mark confidence intervals for the quartiles?

1.5 R Complements

1.5.1 Random Numbers

1.5.2 Graphical Comparisons

Exercise 1.22	
	Generate a $P P$ plot of the $t(\nu)$ distribution against the standard normal distribution in the range $0.01 \leq p \leq 0.99$ for $\nu=1,2,3, \ldots$
	Generate a $Q Q$ plot of the $t(\nu)$ distribution against the standard normal distribution in the range $-3 \leq x \leq 3$ for $\nu=1,2,3, \ldots$
	How large must ν be so that the t distribution is barely different from the normal distribution in these plots?
	How large must ν be so that the t distribution is barely differ- ent from the normal distribution if you compare the graphs of the distribution functions?

Exercise 1.23	
	Use $P P$ plots instead of distribution functions to illustrate the $\chi^{2}-$ and Kolmogorov-Smirnov approximations.

Exercise 1.24

Use $Q Q$ plots instead of distribution functions.
Can you add confidence regions to these plots with the help of the χ^{2} - resp. Kolmogorov-Smirnov statistics?

Exercise 1.25	
	Generate a matrix of dimensions $(n r o w * n c o l-1)$, length (x) with random numbers and use apply () to avoid the loop.
Hint: See Example 1.1 (page 3).	

Exercise 1.26			
	Use rnorm () to generate with pseudo-random numbers for the nor- mal distribution for sample size $n=10,20,50,100$.		
For each sample, generate a $P P$ plot and a $Q Q$ plot, using the			
theoretical normal distribution as a reference.		\left\lvert\,	Add Monte Carlo bands from the envelope of 19 simulations.
:---	:---		
Instead of the uniform distribution, you have to use the normal			
distribution to generate the Monte Carlo bands. Then you have to			
represent the results in the coordinate system of the $Q Q$ plots, that			
is, the x axis represents the quantiles of the normal distribution.			
Hint: Inspect the source of qqnorm().			
The bands are initially bands for the standard normal distribution.			
Find bands adjusted in scale and location of the data at hand.	.\right.		

1.5.3 Complements: Functions

Exercise 1.27	
	Rework your programming exercises and write reusable parts as functions.

Exercise 1.28	
	Write as functions: - A function ehist showing an augmented histogram. - A function eecdf showing the empirical distribution. - A function eqqnorm showing a $Q Q$ plot with the standard normal distribution as comparison. - A function eboxplot showing a box-and-whisker plot. and - A wrapper function eplot showing a plot matrix with these four plots. Your functions should call the standard functions (or modify them, if necessary) and guarantee that the plots have an adequate complete annotation.

Vectorisation

I

Exercise 1.29	Vectorisation
	Write sqrt0() as a vectorised function using ifelse().

Compilation

1.5.4 Complements: Enhancing Graphical Displays

Exercise 1.30

Use help (plot) to inspect the possibilities of customising the plot function. Information on details of the parameters is only available if you use help (plot.default). Modify your latest plot so it has a correct main title.

1.5.5 Complements: R Internals

Executing Files
1.5.6 Search Paths, Frames and Environments
1.6 Additional Exercises

Exercise 1.31	Feature Detection
	This series of example tries to judge feature detection sensitivity of various displays for univariate data. for a preparation, find (and fix) a display arrangement that is convenient for your display, (for example par ($m f r o w=c(5,4)$). Select a false detection rate you are willing to tolerate (for example, $2 / 20=10 \%$).
*	Write a function plotdens <- function(n) that draws n normal random numbers for each of the display frames. Find a number $n_{\text {sym }}$ so that with $n \geq n_{\text {sym }}$ observations most results appear symmetric (i.e. the non-symmetric samples are below tolerance rate. Find a number $n_{\text {unimodal }}$ so that with $n \geq n_{\text {unimodal }}$ observations most results appear unimodal (i.e. the multimodal samples are below tolerance rate.
	Modify your function by adding an additional parameter plotdens <- function(n, generator=rnorm) that allows to select a random number generator. For the following distributions, find a sample size that allow detection of the given features reliably within tolerance.

Exercise 1.32	Distribution
	Prepare a plot with one display frame showing a test sample, the others showing uniform random samples. What is the required sam- ple size to identify a normal distribution with an error rate below tolerance level? With this sample size, what is the false detection rate if you start with a uniform sample.
	Exchange the roles. Use a uniform sample as a test sample, and normal samples for comparisons. What is the required sample size to identify a uniform distribution with an error rate below tolerance level? With this sample size, what is the false detection rate if you start with a gaussian sample.

Exercise 1.33	
	Repeat the example above using a QQ-Plot.
	Repeat the example above using a histogram.

1.6.1 Complements: Packages

Using Packages
Building Packages

Exercise 1.34

Install the functions from Exercise 1.28 as a package. You can prepare the package with package.skeleton(), if you have already defined the functions.
Load the package. Verify that you can still load the package with library () if you have restarted the R system.
Hint: For an object x, the statement prompt (x) generates a skeleton upon which you can build a documentation for x .

Compilation

1.7 Statistical Summary

1.8 Literature and Additional References

[9] R Development Core Team (2000-2008): Writing R Extensions.
See: http://www.r-project.org/manuals.html.
[12] Shorack, G. R.; Wellner, J. A.: Empirical Processes with Applications to Statistics. Wiley, New York, 1986.
[3] Gänßler, P.; Stute, W.: Wahrscheinlichkeitstheorie. Springer, Heidelberg, 1977.
[4] Gentleman, R.; Ihaka, R.: Lexical Scope and Statistical Computing. Journal of Computational and Graphical Statistics 9 (2000) 491-508.

CHAPTER 2

Regression

2.1 General Regression Model

2.2 Linear Model

2.2.1 Factors

2.2.2 Least Squares Estimation

For this example data set, we get the least squares estimator using

Exercise 2.1

When we generated the data, we did not use a constant term. The model specified for estimation, however, did not exclude the constant term. Repeat the estimation using the model without a constant term. Compare the results.

Example 2.2: Linear Model Summary
$\operatorname{summary}\left(\operatorname{lm}\left(\mathrm{y}^{\sim} \mathrm{x}\right) \mathrm{)}\right.$ Input
Call: Output
Residuals:
Min 1Q Median 3Q Max
$\begin{array}{llllll}-28.2790 & -6.3290 & 0.8087 & 7.3920 & 28.3508\end{array}$
Coefficients:
$\begin{array}{lcrrrr} & \text { Estimate Std. Error } \\ \text { t value } & \operatorname{Pr}(>\|t\|) \\ \text { (Intercept) } & -1.2947 & 1.9719 & -0.657 & 0.513\end{array}$
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
$\begin{array}{ll}\text { Multiple R-squared: } 0.9829, & \text { Adjusted } \mathrm{R} \text {-squared: }\end{array}$

Exercise 2.2

Analyse the output of $\operatorname{lm}()$ shown in Example 2.2. Which of the terms can you interpret? Write down your interpretations. For which terms do you need more information?

Generate a commented version of the output.

2.2.3 Regression Diagnostics

Exercise 2.3	
	Let \quad yy <- $2.5 * x+0.01 * x^{\wedge} 2+$ err
	What are the results you get if you do a regression using the (in- correct) regression model yy $\sim \mathrm{x}$? Do you get any hints that this model is not adequate?

Exercise 2.4

Use plot() to inspect the results of Exercise 2.3. Does it give you indications that the linear model is not appropriate? Which indications?

2.2.4 More Examples for Linear Models

2.2.5 Model Formulae

Exercise 2.5	
	Write the four models from Section 2.2 .4 using the R formula no- tation.
	For each of these models, generate an example data set by simu- lation, and apply $1 m()$ to the example. Compare the estimators returned by $\operatorname{lm}()$ with the parameters you have used in the simu- lations.

Exercise 2.6

Generate three vectors of random variables with an $N\left(\mu_{j}, 1\right)$ distribution, $\mu_{j}=j, j=1,3,9$, each of length 10 , and combine these into a vector y.
Generate a vector x with the values $j, j=1,3,9$, each repeated 10 times.
Calculate the Gauss-Markov estimator in the linear models $y \sim x$ and $y \sim f a c t o r(x)$.
Inspect the results as a table using summary() and graphically using plot(). Compare the results, and give a written report.

Exercise 2.7	
	What is the distribution of $\left\|R_{X}(Y)\right\|^{2}=\|Y-\widehat{Y}\|^{2}$, if ε has a $N\left(0, \sigma^{2} I\right)$ distribution?

Exercise 2.8	
	Modify the output of plot.lm() for the linear model so that in- stead of the Tukey-Anscombe plot the studentised residuals are plotted against the fit.
$*$	Enhance the $Q Q$-Plot by Monte Carlo bands for independent nor- mal errors. Hint: You cannot generate the bands directly from a normal dis- tribution - you need the distribution of the residuals, not the distribution of the errors.

Exercise 2.9	
	Write a procedure that calculates the Gauss-Markov estimator for the simple linear regression $y_{i}=a+b x_{i}+\varepsilon_{i} \quad$ with $x_{i} \in \mathbb{R}, a, b \in \mathbb{R}$ and shows four plots: - response against regressor, with estimated straight line - studentised residuals against fit - distribution function of the studentised residuals in a $Q Q$ plot with confidence bands - histogram of the studentised residuals

2.3 Variance Decomposition and Analysis of Variance

Exercise 2.10	
	What is the distribution of F, if $E(Y) \in \mathscr{M}_{X^{\prime}}$ applies and ε is distributed as $N\left(0, \sigma^{2} I\right) ?$

Exercise 2.11	
	Give an explicit formula for the F statistics for analysis of variance in the one-way layout in comparison to the homogeneous model $y_{i j}=\mu+\alpha_{j}+\varepsilon_{i j}$.

The analysis of variance gives another representation and interpretation of linear models. For example, the regression result from (Example ??) gives the following analysis of variance representation:

anova() can be used to compute analysis of variance tables for one or more fitted model objects.

Exercise 2.12	
	Analyse the output of $\operatorname{lm}()$ shown in Example 2.2 (page 17). Which terms can you interpret now? Give a written report. For which terms do you need more information?

Exercise 2.13 One-Way Anova

$*$	Write a function oneway() which takes a data table as an argument and performs a one-way analysis of variance as a test on difference between the columns.
$*$	Enhance oneway () by adding the necessary diagnostic plots. Which diagnostics are necessary?

Exercise 2.14	Kiwi Hopp
	The industrial enterprise Kiwi Inc. ${ }^{1}$ wants to develop a new heli- copter for the market. The helicopter design is rated by the time it stays in air before it touches ground ${ }^{2}$ from a fixed starting height (ca. 2m). Figure 2.1, page 26, shows a design drawing. What are the factors that can affect the variability of the flight (sink) time? What are the factors that can affect the mean flight duration?
	Perform 30 test flights with a prototype and measure the time in $1 / 100$ s. (You will have to cooperate in pairs to carry out the measurements.) Would you consider the recorded times as normally distributed? The requirement is that the mean flight duration reaches at least $2.4 s$. Does the prototype satisfy the requirement?
	Your task is to select a design for production. The variants under discussion are: rotor width 45 mm rotor width 35 mm rotor width 45 mm with an additional fold for stabilisation rotor width 35 mm with an additional fold for stabilisation (cont.) \rightarrow

[^0]\(\left.$$
\begin{array}{|l|l|}\hline \text { Exercise 2.14 } & \text { Kiwi Hopp (cont.) } \\
\hline & \begin{array}{l}\text { Your budget allows for about } 40 \text { test flights. (If you need more } \\
\text { test flights, you should give good arguments for this.) Build 4 pro- } \\
\text { totypes, perform the test flights and record the times. Find the } \\
\text { design that achieves maximum flight duration. Generate a report. } \\
\text { The report should contain the following details: } \\
\text { - a list of the observed data and a description of the experimental } \\
\text { procedure } \\
\text { - suitable plots of the data for each of the designs } \\
\text { - an analysis of variance }\end{array}
$$

- a clear summary of your conclusions\end{array}\right\}\)| Additional hints: Randomise the sequence of your experiments. Re- |
| :--- |
| duce the variation by providing uniform conditions for the experi- |
| ment (same height, same launch technique, etc.). |

2.4 Simultaneous Inference

2.4.1 Scheffé's Confidence Bands

2.4.2 Tukey's Confidence Intervals

Case Study: Titre Plates

2.5 Beyond Linear Regression

Transformations

2.5.1 Generalised Linear Models

Exercise 2.15	
	Write the normal densities in the exponential form (??). What is the natural statistics? What is the natural parametrisation?

2.5.2 Local Regression

2.6 R Complements

2.6.1 Complements: Discretisation

2.6.2 Complements: External Data

2.6.3 Complements: Testing Software

Exercise 2.16	
	For this series of exercises, let $y_{i}=a+b x_{i}+\varepsilon_{i}$ with ε_{i} iid $\sim N\left(0, \sigma^{2}\right)$ and $x_{i}=i, i=1, \ldots, 10$.
	Choose a strategy to inspect $\operatorname{lm}()$ with regard to the parameter space $\left(a, b, \sigma^{2}\right)$. Are there apparent cellular decompositions for the parameters $a, b, \sigma^{2} ?$ What are the trivial cases? What are the asymptotics that apply? Choose test points in the interior of each cell and on the boundaries. Perform these tests and summarise the results.
	What are the symmetries/anti-symmetries that apply? Check for these symmetries.
	Which invariant or covariate behaviour applies? Check for these invariant or covariate behaviour.

Exercise 2.17	
	For this series of exercises, let $y_{i}=a+b x_{i}+\varepsilon_{i}$ with ε_{i} iid \sim $N\left(0, \sigma^{2}\right)$.
	What are the extremal designs $\left(x_{i}\right)$? Check the behaviour of $1 m()$ for four extremal designs.
	Perform the tests from the last exercise, now with variable design. Summarise your results.

Exercise 2.18	
	For this series of exercises, let $y_{i}=a+b x_{i}+\varepsilon_{i}$ with ε_{i} iid \sim $N\left(0, \sigma^{2}\right)$.
	Modify $\operatorname{lm}()$ to give a fail-safe function for simple linear models that checks deviations from the model assumptions as well.

2.6.4 R Data Types

2.6.5 Classes and Polymorphic Functions
2.6.6 Extractor Functions

2.7 Statistical Summary

2.8 Literature and Additional References

[1] Chambers, J.M.; Hastie, T.J. (eds.) (1992): Statistical Models in S. Chapman \& Hall, New York.
[5] Jørgensen, B. (1993): The Theory of Linear Models. Chapman \& Hall, New York.
[8] R Development Core Team (2004-2008): The R language definition.
[10] Sawitzki, G. (1994): Numerical Reliability of Data Analysis Systems. Computational Statistics \mathcal{G} Data Analysis 18.2 (1994), 269-286. http://www.statlab.uni-heidelberg.de/reports/.
[11] Sawitzki, G. (1994):Report on the Numerical Reliability of Data Analysis Systems. Computational Statistics 8 Data Analysis/SSN 18.2 (1994) 289-301. http://www.statlab.uni-heidelberg.de/reports/.

Figure 2.1 KiwiHopp

CHAPTER 3

Comparisons

We begin with the construction of a small gadget that will provide us with example data. The base is a reaction tester. We present a "random" point, wait for a mouse click on that point and record the position of the mouse pointer. To get a stable image for repeated activations, we fix the coordinate system.

Example 3.1: Interactive Location

```
plot(x = runif(1), y = runif(1),
    xlim = c(0, 1), ylim = c(0, 1),
    main = "Please click on the circle",
    xlab = '', ylab = '',
    axes = FALSE, frame.plot = TRUE)
xclick <- locator(1)
```

Please click on the circle

Now we wrap up the base function in a timer. We record the coordinates, try to measure the reaction time, and return the results as a list.

```
Example 3.2: Click Timing
click1 <- function()\{
    \(x<-r u n i f(1) ; y<-r u n i f(1)\)
    \(\operatorname{plot}(x=x, y=y, x \lim =c(0,1), y \lim =c(0,1)\),
        main \(=\) "Please click on the circle",
        \(x l a b=1 ', y l a b=1 '\),
        axes \(=\) FALSE, frame.plot \(=\) TRUE)
    clicktime <- system.time(xyclick <- locator(1))
    list(timestamp = Sys.time(),
        \(x=x, y=y\)
        xclick = xyclick\$x, yclick = xyclick\$y,
        tclick = clicktime[3])
\}
```

For later processing we can integrate the list in a data.frame and extend this data.frame stepwise using rbind.

```
Example 3.3: Sequential Recording
```


Exercise 3.1 Click Timing

Define a function click(runs) that repeats click1() a chosen number runs plus one times and returns the result as a data.frame. The additional first timing should be considered as a "warming up" and is not included in the following evaluations.

Select a number runs. Give reasons for your choice of runs. Execute click(runs) and store the result in a file using write.table().
Display the distribution of the component tclick with the methods from Chapter 1 (distribution function, histogram, box-andwhisker plot).

3.1 Shift/Scale Families, and Stochastic Order

Exercise 3.2 Click Comparison

Perform Exercise 3.1 using the right hand and then again using the left hand. Compare the empirical distributions of the timing data returned by tclick() for the right and left hand.
The recorded data also contain information about the positions.
Define a distance measure dist for the deviation. Give reasons for your definition. Perform a right/left comparison for dist.
For later analysis, store the results for the right hand and for the left hand in files. named "clickright-xxxx" and " "clickrightxxxx", where xxxx is an identification of you choice. For example, use your initials, the date and some sequential number, such as in "clickright-cs20050416-1".

We concentrate on the comparison of two distributions only, for example, that of the results of two treatments. And we take a simple case: we assume that the observations are independent and identically distributed for each treatment. We use the index notation that is usual for the comparison of treatments in the two sample case.
$Y_{i j}$ independent identically distributed with distribution function F_{i}
$i=1,2 \quad$ treatments
$j=1, \ldots, n_{i} \quad$ observations in treatment group i.
How do we compare the observations in the treatment groups $i=1,2$? The (simple) linear models

$$
Y_{i j}=\mu+\alpha_{i}+\varepsilon_{i j}
$$

consider only the case where the difference amounts to a shift $\Delta=\alpha_{1}-\alpha_{2}$.
Notation: For a distribution with distribution function F the family

$$
F_{a}(x)=F(x-a)
$$

is called the shift family for F. The parameter a is called the shift or location parameter.

Speaking in terms of probabilities, the treatment can shift probability mass in quite different ways from what can be achieved by an additive shift term. We need more general ways to compare distributions. Shift families are not the only framework to consider.
Notation: A distribution with distribution function F_{1} is stochastically smaller than a distribution with distribution function F_{2} (in symbols, $F_{1} \prec F_{2}$), if a variable distributed as F_{1} takes rather smaller values than a variable distributed as F_{2}. This means that F_{1} increases sooner.

$$
F_{1}(x) \geq F_{2}(x) \forall x
$$

and

$$
F_{1}(x)>F_{2}(x) \text { for at least one } x \text {. }
$$

For shift families we have: If $a<0$, then $F_{a} \prec F$. The shift results in a parallel shift of the distribution functions.

A typical result of the click comparison experiment (Exercise 3.2) is given in Figure 3.1. The response times for the right side are stochastically smaller than those for the left side. But the distributions do not belong to a common shift family, since the distribution functions are not parallel.

Figure 3.1 Distribution functions for the right/left click time (samples from one person).

Exercise 3.3 Stochastic Order

What does a $P P$ plot for F_{1} against F_{2} look like if $F_{1} \prec F_{2}$?
What does a $Q Q$ plot for F_{1} against F_{2} look like if $F_{1} \prec F_{2}$?

Exercise 3.4	
	The scale shift family for the $N(0,1)$ distribution are the $N\left(\mu, \sigma^{2}\right)$ distributions. Which $N\left(\mu, \sigma^{2}\right)$ distributions are stochastically smaller than the $N(0,1)$ distribution? Which are stochastically larger? Which distributions have an undefined order relation to $N(0,1) ?$

3.2 $Q Q$ Plot, $P P$ Plot, and Comparison of Distributions

Exercise 3.5	
	Use the $Q Q$ plot to compare the results of the right/left click experiments. Summarise the results.
	Combine the right/left tclick data to a vector. Compare the $Q Q$ plot with that of Monte Carlo samples taken from the joined vec- tor. Hint: You can draw random samples with sample(). With par (mfrow $=c(2, ~ 2))$ you arrange the display area so that it shows four plots at a time.
$* *$	For sample() use replace = FALSE. How do you have to apply sample() now to split the joint vector into two vectors with Monte Carlo samples? What differences do you expect in comparison to replace = TRUE?

Exercise 3.6	
	Find scale and shift parameters for the right/left click data so that, after using these parameters for transformation, the groups match as well as possible. Describe the differences using these pa- rameters. Use a model formulation in terms of a linear model.
	Use the function boxplot () to display quartiles and tail behaviour. Compare the information with the information you derived from the scale and shift parameters. Hint: What corresponds to the shift (or location) parameter? What corresponds to the scale parameter?

If representations such as visual representations in displays or numeric representations in summary statistics are affine invariant, scale and shift parameters can be ignored. If representations are not affine invariant, it is often helpful to estimate scale and shift
parameters first, then standardise the distributions, and only then to inspect the standardised distributions.

The potential problem with this is that we have to take into account the stochastic behaviour of the scale and shift parameter estimation. The usual way out is to be cautious and use "conservative" tests and robust estimators. The following function tries to transform scale and location to match a standard normal distribution.

```
ScaleShiftStd <- function (x) {
    xq <- quantile(x[!is.na(x)], c(0.25, 0.75))
    y <- qnorm(c(0.25, 0.75))
    slope <- diff(y)/diff(xq)
    (x-median(x, na.rm = FALSE)) * slope
    }
```


Exercise 3.7 Scale/Shift Standardisation

This algorithm is only appropriate for symmetric distributions.
Combine it with a power transformation as in Section 2.5 (page 23) to symmetrise a distribution and give an algorithm that can be applied to asymmetric transformations.

Exercise 3.8	Two-Sample Monte Carlo Bands
*	Modify the functions for the $P P$ plot and the $Q Q$ plot so that Monte Carlo bands for the comparison of two samples are added. (Use a scale/shift standardisation for the $P P$ plot.)
For the bands, you can use an overlay of line plots.	
Hint: Use the function sample() to generate random permutations.	

Exercise 3.9	
$* *$	Augment the $P P$ plot and $Q Q$ plot for the click experiments by permutation bands that cover 95% of the permutations.
$* *$	Generate new plots from the $P P$ plots and $Q Q$ plots by adding Monte Carlo bands from permutations. Use an envelope of 19 Monte Carlo samples.
Hint: Use function sample() to draw a random sample of sample size n_{1} from $x=\left(Y_{11}, \ldots, Y_{1 n_{1}}, Y_{12}, \ldots, Y_{1 n_{2}}\right)$.	
	Hint: See help(sample).

Exercise 3.10	
$*$	Try to compare the properties of permutation bands, Monte Carlo bands and bootstrap bands on the hypothesis where $F_{1}=F_{2}$.

If not the distributions, but only single specified parameters are to be compared, an analogous strategy can be used. For example, if we focus on shift alternatives (that is F_{1} and F_{2} are from a shift family, $F_{1}(x)=F_{2}(x-a)$ for some a, we can take the mean (or the median) as the parameter of interest. The procedure given above can be used analogously to test the hypothesis that the distributions are not different ($a=0$), based on the data.

Exercise 3.11

$*$	Formulate the strategies given above for intervals of single test statistic (example: mean) instead of bands. Hint: Instead of the two mean values for both groups, can you use a single one-dimensional statistic?

3.2.1 Kolmogorov-Smirnov Tests

We also can use simulation to determine bands. In contrast to the one-sample case we do not have a given distribution from which to simulate. Under the hypothesis that the distributions F and G do not differ for independent observations the joined vector $\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right)$ is the vector of $n+m$ independent random numbers with identical distribution $F=G$. Given a data set, this relation can be used for simulation. Using a permutation π of the indices from the vector $Z=\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right)$ a new vector Z^{\prime} with $Z_{i}^{\prime}=Z_{\pi(i)}$ is generated. The first n components are used as simulated values $\left(X_{i}^{\prime}\right)_{i=1, \ldots, n}$, the remaining m components as simulated values $\left(Y_{j}^{\prime}\right)_{j=1, \ldots, m}$.

Exercise 3.12

$*$	Implement this algorithm and enhance the $P P$ plot by adding simu- lated $P P$ plots generated by a small number (19?) of permutations.
	Determine the permutation distribution of $\sup \left\|F_{n}-G_{m}\right\|$ from the simulation and calculate this statistic for the original data. Can you use this comparison to define a test procedure?
	The Kolmogorov-Smirnov test as implemented uses an approxima- tion for the two-sample case. In our simulation we know that we simulate under the hypothesis. So any rejection we get is a false rejection, i.e., an error. Inspect the distribution of the error level under the simulated conditions.

Exercise 3.13

Use the $Q Q$ plot for a pair-wise comparison of the results of the helicopter experiment from Chapter 2. Summarise your results.

Exercise 3.14

Inspect the implementation of qqnorm(). Implement an analogous function for the $P P$ plot and apply it to the helicopter data.

3.3 Tests for Shift Alternatives

Exercise 3.15	
$*$	Use a simulation to inspect the distribution of $\overline{Y,}, \widehat{\operatorname{Var}(Y})$ and the t statistic for Y from a uniform distribution $U[0,1]$ with sample size $n=1, \ldots, 10$. Compare the distributions from the simulation with the corresponding normal, χ^{2} resp. t distribution.
	Use a simulation to inspect the distribution of $\bar{Y}, \widehat{\operatorname{Var}(Y})$ and the t statistic for Y from a mixture, consisting at 90% from an $N(0,1)-$ and at 10% from an $N(0,10)$ distribution, with sample size $n=1, \ldots, 10$. Compare the distributions from the simulation with the corresponding normal, χ^{2} resp. t distribution.

Exercise 3.16

Use the Wilcoxon test to compare the results of the right/left click experiment.
Use both variants, the approximative test wilcox.test () and the exact Wilcoxon test wilcox_test ().

Exercise 3.17	Click Project
$* * *$	In the the right/left click experiment several effects contribute to the response time. Some problems: - The response time comprises reaction time, time for the large scale movement of the mouse, time for fine adjustment, etc. - For the right/left movement in general a swivel of the hand is sufficient. For forward/backward movement in general a move- ment of the arm is necessary. It is not to be expected that both movements have a comparable statistical behaviour. - Subsequent records may be affected by a training effect, or by a tiring effect. Can you modify the experiment or the evaluation so that differences in the reaction time components can be investigated? Can you modify the experiment or the evaluation so that differences in the precision of the position of the click can be investigated?
	Inspect and document for yourself the right/left differences in re- action time and precision. Summarise your results as a report.

Exercise 3.18	Power Comparison
	Use the shift/scale families of $N(0,1)$ and $t(3)$ and design a setting to compare the performance of the Wilcoxon test with that of the t-test for each of these families.
Perform the comparison in a simulation with sample sizes $n_{1}=$ $n_{2}=10,20,50,100$ and summarise your results.	
	Do an analogous comparison using simulation data from the log- normal distribution.

3.4 A Road Map

3.5 Power and Confidence

3.5.1 Theoretical Power and Confidence

3.5.2 Simulated Power and Confidence

3.5.3 Quantile Estimation

Exercise 3.19	Interquartile Interval
	Write a function that calculates the coverage probability $n \mapsto$ $P\left(\operatorname{med}(X) \in I_{Q}\right)$ where I_{Q} is the empirical interquartile interval. Hint: Use (??).
	What is the minimal sample size so that the interquartile box covers the median with at least 90% confidence?

3.6 Qualitative Features of Distributions

3.7 Statistical Summary

3.8 Literature and Additional References

[14] William N. Venables and Brian D. Ripley, B (2002): Modern Applied Statistics with S.

Springer, Heidelberg.
[13] William N. Venables, W.N.; and Brian D. Ripley (2000): S Programming. Springer, Heidelberg.
[7] Rupert G. Miller (1981): Simultaneous Statistical Inference.
Springer, Heidelberg.

CHAPTER 4

Dimensions $1,2,3, \ldots, \infty$

4.1 R Complements

4.2 Dimensions

4.3 Selections

4.4 Projections

4.4.1 Marginal Distributions and Scatter Plot Matrices

Exercise 4.1	
	Generate a scatterplot matrix for the diabetes data set that shows a histogram of the variables in the diagonal panels. Hint: See help(pairs).

4.4.2 Projection Pursuit

```
library("lattice")
diabcloud <- function(y, where, more = TRUE, ...) {
        print(cloud(ga ~ ina + sspg, data = chemdiab, groups = cc,
            screen = list(x = -90, y = y), distance = .4, zoom = .6,
            auto.key = TRUE, ...),
            split = c(where, 3, 2), more = more)
}
supsym <- trellis.par.get("superpose.symbol")
supsymold <- supsym
supsym$col = c("magenta", "green3", "cyan")
trellis.par.set("superpose.symbol" = supsym)
diabcloud(y = 70, where = c(1, 1))
diabcloud(y = 40, where = c(2, 1))
diabcloud(y = 10, where =c(3, 1))
```

```
diabcloud(y = -20, where = c(1, 2))
diabcloud(y = -50, where = c(2, 2))
diabcloud(y = -80, where = c(3, 2), more = FALSE)
trellis.par.set("superpose.symbol" = supsymold)
rm(diabcloud, supsymold, supsym)
```


Chemical_Diabetic Overt_Diabetic

See Colour Figure ??.

Exercise 4.2

Modify this example so that you get an impression of the threedimensional structure. Try to use an animated sequence. You can use sys. wait() if it is available on your system to control the time sequence, or use devAskNewPage () to give interactive control for new images.

What is the difference between open diabetes and chemical diabetes?

How does the normal group compare to both diabetes groups?
4.4.3 Projections for Dimensions 1, 2, 3, ... 7

4.4.4 Parallel Coordinates

Exercise 4.3	
	For the chemdiab data set, prepare a (written!) report about the relation between the variables that you can recognise in the parallel coordinate plot.
	Instead of using chemdiab [2:5] you can specify the variables ex- plicitly as chemdiab[c(2, 3, 4, 5)]. This gives you control over the order of the variables. Compare two different sequences of the variables and note (in writing!) your observations. Which sequence of variables gives the simpler display?
	Which relations between the variables are visible in both? Which relations appear only in one of the arrangements?

4.5 Sections, Conditional Distributions and Coplots

From an abstract point of view, sections are conditional distributions of the type $P(\cdot \mid$ $X=x)$. But they are only reliable where the section defines a condition that has positive probability. To make the idea of restricting the view on conditional distributions applicable to data, we thicken the sections. Instead of considering conditional distributions of the type $P(\cdot \mid X=x)$ we consider $P(\cdot \mid\|X-x\|<\varepsilon)$, where ε possibly can vary with x. In graphical representations of data this requires a series of plots showing only the part of the data set specified by the condition.

Statistically, projections lead to marginal distributions and sections to conditional distributions. In a certain sense, sections and projections are complementary: projections show structural features of low dimension. Sections are helpful to detect structural features of low codimension. For data analysis, both can be combined. The interplay of projections and sections is discussed in [2]. Like the dimension boundaries for projections there are boundaries for the codimension when using sections. We can only catch structures of small codimension. If the codimension is too large, a typical section is empty, hence it has no information.

As a first tool, R provides the possibility to analyse two variables conditioned on one or more additional variables. As a graphical display coplot() serves for this purpose. It is a variant of the plot matrix and shows in each panel the scatterplot of two variables, given the condition.

The coplot can be inspected for patterns. If the variables shown are stochastically independent of the conditioning variables, all plot elements show the same shape. The variables shown and the conditioning variables can then be de-coupled.

If the general shape coincides, but location and size vary, this hints at a (not necessarily linear) shift/scale relation. Additive models or variants of these can be used to model the relation between the variables shown and conditioning variables.
If the shape changes with varying condition, a major dependency structure or interaction may apply that needs more precise modelling.

help(coplot)

coplot Conditioning Plots

Description

This function produces two variants of the conditioning plots discussed in the reference below.

Usage

coplot(formula, data, given.values, panel $=$ points, rows, columns, show.given = TRUE, col = par("fg"), pch = par("pch"), bar.bg = c(num $=\operatorname{gray}(0.8)$, fac $=\operatorname{gray}(0.95)$), xlab = c(x.name, paste("Given :", a.name)), ylab $=c(y . n a m e, ~ p a s t e(" G i v e n ~: ", ~ b . n a m e)), ~$ subscripts = FALSE, axlabels = function(f) abbreviate(levels(f)), number $=6$, overlap $=0.5$, xlim, ylim, ...)
co.intervals(x, number $=6$, overlap $=0.5$)

Arguments

formula a formula describing the form of conditioning plot. A formula of the form $\mathrm{y}{ }^{\sim} \mathrm{x} \mid \mathrm{a}$ indicates that plots of y versus x should be produced conditional on the variable a. A formula of the form y $\sim \mathrm{x} \mid \mathrm{a} * \mathrm{~b}$ indicates that plots of y versus x should be produced conditional on the two variables a and b .
All three or four variables may be either numeric or factors. When x or y are factors, the result is almost as if as.numeric () was applied, whereas for factor a or b , the conditioning (and its graphics if show.given is true) are adapted.
data a data frame containing values for any variables in the formula. By default the environment where coplot was called from is used.
given.values a value or list of two values which determine how the conditioning on a and b is to take place.
When there is no b (i.e., conditioning only on a), usually this is a matrix with two columns each row of which gives an interval, to be conditioned on, but is can also be a single vector of numbers or a set of factor levels (if the variable being conditioned on is a factor). In this case (no b), the result of co.intervals can be used directly as given.values argument.
$\left.\begin{array}{ll}\text { panel } & \begin{array}{l}\text { a function(} \mathrm{x}, \mathrm{y}, \text { col, pch, ...) which gives the action to be } \\ \text { carried out in each panel of the display. The default is points. }\end{array} \\ \text { the panels of the plot are laid out in a rows by colums array. } \\ \text { rows gives the number of rows in the array. }\end{array}\right\}$

Details
In the case of a single conditioning variable a, when both rows and columns are unspecified, a 'close to square' layout is chosen with columns >= rows.
In the case of multiple rows, the order of the panel plots is from the bottom and from the left (corresponding to increasing a, typically).

A panel function should not attempt to start a new plot, but just plot within a given coordinate system: thus plot and boxplot are not panel functions.
The rendering of arguments xlab and ylab is not controlled by par arguments cex.lab and font.lab even though they are plotted by mtext rather than title.

Value
co.intervals(., number, .) returns a (number $\times 2$) matrix, say ci, where ci $[k$, is the range of x values for the k -th interval.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth \& Brooks/Cole.

Cleveland, W. S. (1993) Visualizing Data. New Jersey: Summit Press.

See Also
pairs, panel.smooth, points.

Examples

```
## Tonga Trench Earthquakes
coplot(lat ~ long | depth, data = quakes)
given.depth <- co.intervals(quakes$depth, number = 4, overlap = .1)
coplot(lat ~ long | depth, data = quakes, given.v = given.depth, rows = 1)
## Conditioning on 2 variables:
ll.dm <- lat ~ long | depth * mag
coplot(ll.dm, data = quakes)
coplot(ll.dm, data = quakes, number = c(4, 7), show.given = c(TRUE, FALSE))
coplot(ll.dm, data = quakes, number = c(3, 7),
    overlap = c(-.5, .1)) # negative overlap DROPS values
## given two factors
Index <- seq(length = nrow(warpbreaks)) # to get nicer default labels
coplot(breaks ~ Index | wool * tension, data = warpbreaks,
    show.given = 0:1)
coplot(breaks ~ Index | wool * tension, data = warpbreaks,
    col = "red", bg = "pink", pch = 21,
    bar.bg = c(fac = "light blue"))
## Example with empty panels:
with(data.frame(state.x77), {
coplot(Life.Exp ~ Income | Illiteracy * state.region, number = 3,
    panel = function(x, y, ...) panel.smooth(x, y, span = .8, ...))
## y ~ factor -- not really sensible, but 'show off':
coplot(Life.Exp ~ state.region | Income * state.division,
```

Exercise 4.4	Earthquakes
	Analyse the "quakes" data set. Summarise your results in a report. Try to specify a formal model.
	How is the geographic position related to the depth?
	Can you identify relations between depth and magnitude of the earthquake? (You may have to choose a different model formula for the plots.)

4.6 Transformations and Dimension Reduction

Exercise 4.5	Iris Classification
	Use the methods from Section 4.4 and 4.5 to inspect the data set. Can you see classification rules that give a classification of the three species to a large extent?

4.7 Higher Dimensions

4.7.1 Linear Case

Partial Residuals and Added Variable Plots

Exercise 4.6	Added Variables
	Modify the following function pairslm() so that it calculates the residuals of the regression of all original variables in matrix x by regression after the new variable $x \$ f i t$, and produces a scatterplot matrix of these residuals. ```pairslm <- function(model, x, ...) { x$fit <- lm(model, x)$fit pairs(x, ...) }``` Add title, legends, etc. Use the "trees" data set as an example.

4.7.2 Non-Linear Case

Example: Cusp Non-Linearity
4.7.3 Case Study: Melbourne Temperature Data
4.7.4 Curse of Dimensionality
4.7.5 Case Study: Body Fat

Exercise 4.7

Use functions plot(), identify(), and text.id() to generate the following output:

Exercise 4.8	
*	Use ```library(leaps) lm.reg <- regsubsets(body.fat ~ age + BMI + neck + chest + abdomen + hip + thigh + knee + ankle + bicep + forearm + wrist + weightkg + heightcm, data = fat)``` and inspect the result with $\begin{aligned} & \text { summary(lm.reg) } \\ & \text { plot(lm.reg, scale }=" r 2 ") \\ & \text { plot(lm.reg, scale }=" \mathrm{bic} " \\ & \text { plot(lm.reg, scale }=" C p ") \end{aligned}$ Hint: See help(plot.regsubsets).
*	Use the function leaps() for model selection.

Exercise 4.9	
	Remove the obvious outliers and rearrange the variables starting from the body volume so that on average the correlation between subsequent variables is maximized.

Exercise 4.10 Think !

Draw a sketch of a member doll that shows which body geometry features are represented by the next principal component PC4, ..., PC10.
For a start, you can concentrate on the signs of the variable weights.

Exercise 4.11	
$*$	Extend the variables by other volume-related variables in the model given above. Do you gain precision?
$* *$	Try to include the variable age in the model. How exactly do you include age in the model?
$* *$	The function mvr () in library (pls) [15] is available to perform a regression based on principal components. Use this function for regression. What is the difference between this estimation and the usual least squares regression?

For model construction, we used only the training part of the data. The quality of the model derived now can be checked using the evaluation part. This can be done using function predict. $\operatorname{lm}()$, which applies a model estimated with $\operatorname{lm}()$ to a new data set with analogous structure, for example:

fat.eval <- fat[fat\$train == FALSE,] pred <- predict.lm(lm.volf, fat.eval, se.fit = TRUE)	
Exercise 4.12	
*	Estimate the precision of the model using the evaluation part of the data.
*	Carry out a regression diagnostics of the model derived, using the evaluation part of the data.

4.8 High Dimensions
4.9 Statistical Summary

References

[1] John M. Chambers and Trevor J. Hastie. Statistical Models in S. Chapman \& Hall, London, 1992.
[2] George W. Furnas and Andreas Buja. Prosection views: Dimensional inference through sections and projections. J. Comput. Graph. Statist., 3(4):323-385, 1994.
[3] Peter Gänßler and Winfried Stute. Wahrscheinlichkeitstheorie. Springer, Heidelberg, 1977.
[4] Robert Gentleman and Ross Ihaka. Lexical scope and statistical computing. Journal of Computational and Graphical Statistics, 9:491-508, 2000.
[5] Bent Jørgensen. The Theory of Linear Models. Chapman \& Hall, New York, 1993.
[6] Paul Massart. The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. The Annals of Probability, 18(3):1269-1283, July 1990.
[7] Rupert G. Miller. Simultaneous Statistical Inference. Springer, New York, 1981.
[8] R Development Core Team. The R language definition, 2008.
[9] R Development Core Team. Writing R Extensions, 2008.
[10] Günther Sawitzki. Numerical reliability of data analysis systems. Computational Statistics \& Data Analysis, 18(2):269-286, 1994.
[11] Günther Sawitzki. Report on the numerical reliability of data analysis systems. Computational Statistics \mathcal{B} Data Analysis, 18(2):289-301, 1994.
[12] Galen R. Shorack and Jon A. Wellner. Empirical Processes with Applications to Statistics. Wiley, New York, 1986.
[13] William N. Venables and Brian D. Ripley. S Programming. Statistics and Computing. Springer, New York, 2000.
[14] William N. Venables and Brian D. Ripley. Modern Applied Statistics with S. Springer, Heidelberg, fourth edition, 2002.
[15] Ron Wehrens and Bjørn-Helge Mevik. pls: Partial Least Squares Regression (PLSR) and Principal Component Regression (PCR), 2007. R package version 2.1-0.

Subject Index

conditioned, 39
data features, 36
data types, 25
distribution
Gaussian, 31
distribution function, 2
factor, 17
function, 12
histogram, 2, 6
interactive, 27, 38
lattice, 37
model
formula, see Wilkinson-Rogers notation
generalised linear, 23
linear, 17, 19, 29
moment, 8
Monte Carlo, 3, 20, 31
plot
box-and-whisker, 11
coplot, 39
histogram, 2, 6
PP, 31
$Q Q, 31$
Tukey-Anscombe, 20
polymorphic, 25
power, 35
quantile, 8,35
quartile, 31
regression
non-linear, 23
principal component, 47
robust, 32
samples
Monte Carlo, 31
shift family, 29
simulation, 35
stochastically smaller, 29

Wilkinson-Rogers notation, 19

[^0]: ${ }^{1}$ Following an idea of Alan Lee, Univ. Auckland, New Zealand.
 ${ }^{2}$ Kiwis cannot fly.

