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An Abstract Machine

Old times

In old times, computing time was computable

register access: negligible

integer: τint , approx. 1 unit

reals: τreal , approx. 10 units

transcendental/non-polynomial: τtrans , approx. 100 units

Total time
t = nrint ∗ τint × nrreal ∗ τreal + nrtrans × τtrans
∝ nrreal + 10× nrtrans “complexity”
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Old times . . . have passed.

Today, time “constants”

vary by configuration (check yours!)

do not differ by magnitude

Total time is not additive (operations may overlap)

Still “complexity” may be a useful notion, in particular if related to
parameters of the computation.
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Complexity

For your problem:

What is an appropriate measure for system size n?
What is the complexity, as a function of system size n?

Use a pragmatic definition, for your purposes only . . .
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Optimisation has two possibilities:

reduce complexity, e.g. by clever algorithms

make efficient use of resources, e.g. by adapted implementation

The algorithm will be applied to data. Data management is a second
field for optimisation.
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Old times

Memory access time was sizeable

register access: negligible

RAM measurable

other storage: slow

Now:

Different media may have different access times.

Access may be dynamic (in a cloud).

Memory management may be an issue to take into account.
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An Abstract Machine

Abstract...ignoring all implementation details

Computers just cannot understand.

For an abstract view, think of computing in terms of four states:

Source → intermediate code → evaluation → result
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Abstract...ignoring all implementation details

Source: the program code we enter
This may be a valid program or it may contain errors, it may be incomplete.

Intermediate code: a graph is a convenient representation

Each node represents an operation to be performed. The terminating nodes are

special: their action is to fetch some data, resulting in a value. Each node can try

to evaluate. If it succeeds, the result is again a value; if it does not succeed, we

have an exception.

ToDo 1: Blackboard graphics: attributed variables and operators
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An Abstract Machine

Abstract...ignoring all implementation details

What is missing in this picture is data. It was a major step towards
programmable computing to understand that in principle data are not
different from instructions.

The intended purpose makes the difference.

For our purpose, it may be helpful to think of data as a separate
entity, at least available at the evaluation step.

Source → intermediate code → evaluation → result

→ data structure → data
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Pen and paper arithmetics

Note: operators are polymorphic even for pen and paper.
ToDo 2: Blackboard 2 + 3 can be added by digit. 2.1 + 3.14
needs adjustment for the exponent, i.e. alignment of the decimal.

G. Sawitzki: Profiling April 3, 2012 13

Computing Background
Optimisation

R Built-in Optimisations
Profiling

References

An Abstract Machine
R Specifics
Performance Measurement: Time
Performance Measurement: Memory
Vectorization

R Specifics

An R function
area <- function(r) pi * r ^2

area(1)

[1] 3.141593

If we enter the name, we get the definition

area

function(r) pi * r ^2

> typeof(area)

[1] "closure"

> mode(area)

[1] "function"

closure is short for function closure, the internal type for functions.
The print() function gives the form most appropriate for a closure.
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area <- function(r) pi * r ^2

We can look at the internal structure

> print(as.list(area))

$r

[[2]]

pi * r^2

> names(as.list(area))

[1] "r" ""

> typeof(as.list(area)[[2]])

[1] "language"
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area <- function(r) pi * r ^2

Internal structure

> as.list(as.list(area)[[2]])

[[1]]

‘*‘

[[2]]

pi

[[3]]

r^2
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area <- function(r) pi * r ^2

Internal structure

> as.list(as.list(area)[[2]][[3]])

[[1]]

‘^‘

[[2]]

r

[[3]]

[1] 2

R is using the call graph as intermediate code, stored in form of a
variable of type list. Convention: first list element is the node name.
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Computing Background

Intermediate Code

“Intermediate code” is the level to think of a program.

In general, the most appropriate representation of a pragram is a
graph that has to be worked through. .

Code optimisation amounts to replacing the graph by an equivalent
graph, with a more efficient execution.

G. Sawitzki: Profiling April 3, 2012 18

Computing Background
Optimisation

R Built-in Optimisations
Profiling

References

An Abstract Machine
R Specifics
Performance Measurement: Time
Performance Measurement: Memory
Vectorization

R Specifics

Type Coercion

To evaluate a node, type conversion may be applied. Ussually, the
amout of effort can only be seen from the implementaion.

ToDo 3: Blackboard: Guarded operator evaluation at run time
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Vector Expansion

R is vectorized. To evaluate a node, scalars may be extended to
vectors, or vectors may be recycled.

ToDo 4: Operator control over vectorization
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Storage

R follows FORTRAN conventions, that is, in arrays the first (highest)
index varies first. Matrices are stored column-wise.

> matrix(1:6, nrow=3)

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

If an algorithm follows this convention, it can be most efficient.
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Storage

Check your algorithms whether they use row-first or column-first. For
R, they better be column first.
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R Specifics

R is interpreted Advantage: you can work line by line.
Downside: no look ahead optimisation

R is untyped Advantage: flexible use of types.
Downside: type has to be determined at evaluation
time.

R is vectorised Advantage: obvious.
Downside: possibly unexpected vectorization or
collapse to scalar.

Note: R is not a matrix language.
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R specifics

Be aware: there is overhead by implicit type conversion or
vectorization.

Vectorize, where sensible.

But: there are pitfalls ahead.

G. Sawitzki: Profiling April 3, 2012 24

Computing Background
Optimisation

R Built-in Optimisations
Profiling

References

An Abstract Machine
R Specifics
Performance Measurement: Time
Performance Measurement: Memory
Vectorization

R Specifics

Exercise

ToDo 5: Vectorization exercise
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Search Paths and Environments

In any programming environment, at some points symbols must be
resolved.

In R, a symbol has a name.

Names need not be unique (e.g. global names, names in variables).

Names have a scope where they are valid.

Scopes form a hierarchy, implemented in R as a chain of
environments.

ToDo 6: lexical scope
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Function Arguments and Environments

An R environment is a frame, a list of symbol/value references. Each
environment has a reference to its enclosing environment.

The most common example is the frame of variables local to a function call;
its enclosure is the environment where the function was defined.

The global environment .GlobalEnv, more often known as the user’s

workspace, is the first item on the search path.
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Function Arguments and Environments

Environments are special objects in R. By default, arguments are passed to

functions by value in R, that is a copy of generated. As an exception,

environments are not copied. They are passed by reference. Wrapping

information in an environment is an important possibility to optimize access

to large data sets.
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Function Arguments and Promises

R uses a lazy evaluation for arguments passed to functions.

When a function is called, the arguments are passed as parsed
expression, together with a reference to the environment to be used
for their evaluation.

Evaluation only takes place when the value of the argument is
actually needed.

See R Optimisation: Function Arguments. Go to Function Arguments
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First clause of control theory

Without measurement, there is no control. . .
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Performance Measurement: Time: system.time()

system.time CPU Time Used

Description

Return CPU (and other) times that expr used.

Usage

system.time(expr, gcFirst = TRUE)

unix.time(expr, gcFirst = TRUE)

skip help
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Performance Measurement: Time: system.time()

system.time CPU Time Used

Usage

system.time(expr, gcFirst = TRUE)

unix.time(expr, gcFirst = TRUE)

Arguments

expr Valid R expression to be timed.
gcFirst Logical - should a garbage collection be performed

immediately before the timing? Default is TRUE.
skip help
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Performance Measurement: Time: system.time()

Details

system.time calls the function proc.time, evaluates expr, and then calls
proc.time once more, returning the difference between the two proc.time

calls.

unix.time is an alias of system.time, for compatibility with S.

Timings of evaluations of the same expression can vary considerably depending
on whether the evaluation triggers a garbage collection. When gcFirst is
TRUE a garbage collection (gc) will be performed immediately before the
evaluation of expr. This will usually produce more consistent timings.
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Timing Functions

system.time(expr, gcFirst =

TRUE)

Elapsed time

unix.time(expr, gcFirst =

TRUE)

Elapsed time

proc.time() R process up time

Sys.sleep(time) Suspend execution of R expressions for
a given number of seconds.

gc.time(on = TRUE) Reports the time spent in garbage col-
lection so far in the R session while GC
timing was enabled.
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Performance Measurement: Time

system.time often is used to compare timings of a series of
conditions.

Benchmark is a simple wrapper around system.time for this
purpose.
library(rbenchmark)

help(benchmark)

Example:
> benchmark(1:10^4, log(1:10^4), sin(1:10^4),

columns=c(’test’, ’elapsed’, ’replications’, ’relative’))

test elapsed replications relative

1 1:10^4 0.003 100 1.00000

2 log(1:10^4) 0.050 100 16.66667

3 sin(1:10^4) 0.081 100 27.00000
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Performance Measurement: Time

Timer Resolution

The timing resolution is limited.

Working range on all nowadays system should be 10ms or better.

To find e.g. the number of iterations to be above the resolution
threshold, use
library(itertools)

timeout(iterable, time)

For example: See how high we can count in a tenth of a second
length(as.list(timeout(icount(), 0.1)))
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Timing: Sequential Numbers

Simple example
> n<- 100

> system.time({vec <- numeric(0); for (i in 1:n) vec <- c(vec,i)})

user system elapsed

0.045 0.001 0.046

Simple example with pre-allocation
> system.time({vec <- numeric(n); for (i in 1:n) vec[i] <- i})

user system elapsed

0.001 0.000 0.000

Pre-allocation reduces time.

Note: Time is recorded with limited precision that is machine dependent.
On all machines, you can expect timing resolution in the order of 1ms.
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Performance Measurement: Time

Timing: Sequential Numbers

> n<- 1000

> system.time({vec <- numeric(0); for (i in 1:n) vec <- c(vec,i)})

user system elapsed

0.048 0.001 0.051

Simple example with pre-allocation
> system.time({vec <- numeric(n); for (i in 1:n) vec[i] <- i})

user system elapsed

0.002 0.000 0.002

Vectorized
> system.time( vec <- 1:n)

user system elapsed

0 0 0
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Timing: Sequential Numbers

Total elapsed times [s]

n = [1] [2] [3]
100 0.046 0.001 0

1000 0.051 0.002 0
10000 0.298 0.018 0

100000 40.474 0.231 0.001
1000000 > 3659.686 2.090 0.001

[1]vec <- numeric(0); for (i in 1:n) vec <- c(vec,i)

[2]vec <- numeric(n); for (i in 1:n) vec[i] <- i

[3]vec <- 1:n
Improvement by pre-allocation[ 2]. Drastic improvement by using vectorized
version [3].
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Case Study: Sequential Numbers

vec <- c(vec,i)

Internal steps:

copy argument vec,i

check type. Adjust type if necessary

calculate requested length length(vec)+length(i)

allocate space of requested length

copy vec to result space

append i to result space

return result as new value for vec

Note: the storage space previously allocated for vec is now free. skip case study
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Case study: Sequential Numbers

vec <- c(vec,i)

Internal steps:

copy argument vec,i

check type. Adjust type if necessary

calculate requested length length(vec)+length(i)

allocate space of requested length

copy vec to result space

append i to result space

return result as new value for vec

Note: the storage space previously allocated for vec is now free. skip case study
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Performance Measurement: Time

Case study: Sequential Numbers

vec <- c(vec,i)

Note: repeated allocation and copy steps are time consuming.

Note: the storage space previously allocated for vec is now free.

Bad news: this slot size is just two items less than the slot needed in the next step.

It cannot be re-used now.

Garbage collection is necessary eventually.

skip case study
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Memory Management

Think of two processes

the computing process

the memory management process

You influence the memory management in two ways

by allocation. This is controlled by the program flow.

by garbage management. This is on demand and influenced by the program state.

Have mercy with your garbage collector.

If a variable is not used, consider marking it for release using rm().

If a slot is not used, consider marking it for release by setting it to NULL.

Consider calling the garbage collector explicitly using gc() before critical program
segments.
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Case Study: Click-Example

click1 <- function(){

x <- runif(1);y <- runif(1)

plot(x = x, y = y, xlim = c(0, 1), ylim = c(0, 1),

main = "Please click on the point",

xlab = ’’, ylab = ’’,

axes = FALSE, frame.plot = TRUE)

clicktime <- system.time(xyclick <- locator(1))

list(timestamp = Sys.time(),

x = x, y = y,

xclick = xyclick$x, yclick = xyclick$y,

tclick = clicktime[3])

}
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Click-Example

click <- function(runs = 1){

dx <- data.frame(click1()) # start up

for (i in (1:runs)){dx <- rbind(dx, data.frame(click1()))}

dx <- dx[-1, ] #discard startup

plot(0, 0,

main = paste(runs, " clicks registered"),

xlab = ’’, ylab = ’’,

axes = FALSE, frame.plot = TRUE)# clean up plotting area

dx

}
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Click-Example: Side Remark

rbind(dx, data.frame(click1())) is worse
than vec <- c(vec,i).

In vec <- c(vec,i) i can be appended to the
new copy of vec.

In rbind(dx, data.frame(click1())), the old
information has to be split to make space and the
new information has to be inserted.

dx[1, 1]
...
dx[n − 1, 1] insert dx[n,1]

dx[1, 2]
...
dx[n − 1, 2] insert dx[n,2]

...

insert dx[n,k−1]

dx[1, k]
...
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Avoid Growing Variables

If you must use growing variables: remember, R stores variables in
‘column first’ order.

Use memory preallocation, if possible.

Consider using a list variable while accumulating data, and reshape
finally as simple as possible.

Files are made for sequential extension. Consider using a file.
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Avoid Storage Type Conversion

Avoid explicit or implicit type conversions. Keep it as simple as
possible, but not simpler.

Prefer using a vector over using a list.

Prefer using a matrix over using a data frame.

But of course if a list or a data frame is needed, don’t use a simpler
type.
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Exercise

Write/select a small example function to time.
Use the click() model to write a timing function.

Write/select a small scalable example function to time.
Use the click() model to write a timing function for a small number
of scale levels.

Display the results.

But on the other side: don’t try working with a vector when a list is
needed. Don’t try working with a matrix when a data frame is needed.
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Memory Usage

Memory usage is dynamic. Memory may be allocated or released during
evaluation, for example to store intermediate results.

In R: Information about memory usage is provided as a side effect of garbage
calculation.

Part of the memory management is garbage collection, and the time used for
garbage collection may be a major concern.

Garbage collection is a second process which is influenced, but not controlled by
your program process.

system.time() does not include specific information about the time for garbage

collection.
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Garbage collection levels

There are three levels of collections.

Level 0 collects only the youngest generation.

Level 1 collects the two youngest generations.

Level 2 collects all generations.

After 20 level-0 collections the next collection is at level 1, and after 5 level-1
collections at level 2.

Further, if a level-n collection fails to provide 20% free space (for each of nodes
and the vector heap), the next collection will be at level n + 1.

(The R-level function gc() performs a level-2 collection.)
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Exercise

Use gc.time() to extend system.time() to provide the time spent
on garbage collection during the process.

Provide a modified function as systemwgc.time() .

Repeat the previous exercise.
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Memory Usage: gc()

gc() Trigger garbage collection.
gcinfo(verbose=TRUE) Make garbage collection verbose

See help(Memory).
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Performance Measurement: Memory: gc()

gc Garbage Collection

Description

A call of gc causes a garbage collection to take place. gcinfo sets a flag so
that automatic collection is either silent (verbose=FALSE) or prints memory
usage statistics (verbose=TRUE).

Usage

gc(verbose = getOption("verbose"), reset=FALSE)

gcinfo(verbose)
skip help
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Performance Measurement: Memory: gc()

Usage

gc(verbose = getOption("verbose"), reset=FALSE)

gcinfo(verbose)

Arguments

verbose logical; if TRUE, the garbage collection prints statistics
about cons cells and the space allocated for vectors.

reset logical; if TRUE the values for maximum space used are
reset to the current values.

skip help
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Details

A call of gc causes a garbage collection to take place. This will also take
place automatically without user intervention, and the primary purpose of
calling gc is for the report on memory usage.

However, it can be useful to call gc after a large object has been removed, as
this may prompt R to return memory to the operating system.

R allocates space for vectors in multiples of 8 bytes: hence the report of
"Vcells", a relict of an earlier allocator (that used a vector heap).

skip help
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Performance Measurement: Memory: gc()

Details

When gcinfo(TRUE) is in force, messages are sent to the message connection
at each garbage collection of the form

Garbage collection 12 = 10+0+2 (level 0) ...

6.4 Mbytes of cons cells used (58%)

2.0 Mbytes of vectors used (32%)

Here the last two lines give the current memory usage rounded up to the next
0.1Mb and as a percentage of the current trigger value. The first line gives a
breakdown of the number of garbage collections at various levels (for an
explanation see the ‘R Internals’ manual).
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Code Level Tools

Instrumenting the code

debug(fun, text="",

condition=NULL)

...

Set, unset or query the debugging flag on

a function.

trace(what, tracer,

exit, at, print, signature,

where = topenv(parent.frame()),

edit = FALSE)

...

A call to trace allows you to insert

debugging code (e.g., a call to browser

or recover) at chosen places in any

function.

Do not forget the global possibility: options(error=browser)
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Vectorization

Vectorized Functions

The basic functions in R are vectorized.

In some instances, vectorization is required, for example for functions
passed as argument to integrators and optimisers.

A function can be vectorized using Vectorize(). Vectorize()

wraps a call using mapply(),

Vectorization by itself does not bring any performance advantage. In
particular, Vectorize() only puts a loop around the code of a
function. Formal vectorization must be accompanied by an access
optimisation.
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Special Libraries, and Other Ways to Avoid the Problems

THINK !

Consider avoiding the problem.

Think ! If you can come up with a closed solution, you may avoid all (or most)
computation.

Consider changing the hardware. If there is and old cpu around with only a part of
the computing power of an up-to-date cpu, but unused most of the time: running
your computation here may save a lot,

Consider local cooperation. You can share computing power. For example, XGrid is
a solution that is readily available.
http://developer.apple.com/hardware/hpc/xgrid_intro.html.

Make use of regional resources. For example, BW Grid provides access to more than
1000 CPUs. http://www.bw-grid.de/allgemeine-informationen/hardware/.
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Special Libraries, and Other Ways to Avoid the Problems

BLAS/LAPACK

For linear algebra, BLAS and LAPACK (or variants thereof) are
standard libraries.

BLAS/LAPACK packages are used by default.

If hardware-optimised versions of BLAS/LAPACK are to be used, R
must be recompiled.
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Special Libraries, and Other Ways to Avoid the Problems

Sparse and/or large matrices

Libraries for sparse or large matrices are available using special R
libraries:

library(bigmemory) library(R.huge)

library(Matrix) library(futile.matrix)

library(SparseM)
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Special Libraries, and Other Ways to Avoid the Problems

References

CRAN task view

http://cran.r-project.org/web/views/HighPerformanceComputing.html

bigmemory: R-Forge Development Page
https://r-forge.r-project.org/R/?group_id=556

Large objects for R: R-Forge Development Page
https://r-forge.r-project.org/R/?group_id=483

See also
http://developer.r-project.org/Sparse.html
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Special Libraries, and Other Ways to Avoid the Problems

R to C/C++ Interfaces

The Rcpp package provides a C++ library which facilitates the
integration of R and C++

Rcpp: R-Forge Development Page
https://r-forge.r-project.org/projects/rcpp/ library(Rcpp)
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http://developer.apple.com/hardware/hpc/xgrid_intro.html
http://www.bw-grid.de/allgemeine-informationen/hardware/
http://cran.r-project.org/web/views/HighPerformanceComputing.html
https://r-forge.r-project.org/R/?group_id=556
https://r-forge.r-project.org/R/?group_id=483
http://developer.r-project.org/Sparse.html
https://r-forge.r-project.org/projects/rcpp/
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Classical Optimisation

Control-flow analysis

Basis: Control-flow graph

Basic block: must enter at beginning, exit only at end (no branches)
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Classical Techniques

Well known, and widely available in compilers (often only as an
option).

Not often used in interpreters.

Some of the following methods are not applicable on an interpreter
level, but still may give helpful hints.
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Local Optimisation- Classical Techniques

Constant Folding: Evaluation of Constants at “Compile Time”

Constant Propagation: Replace Variables by Constants if Value Does Not Change

Algebraic Simplification And Re-association

Operator Strength Reduction

Copy Propagation

Dead Code Elimination
Common Subexpression Elimination

Loop Uncoiling

Global Optimisations and Data Flow Analysis

Code Motion
Machine Optimisation

Register/Memory Allocation

Instruction Scheduling

Peephole Optimisation

skip examples
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Classical Techniques: Constant folding

Main effect: constant evaluation made at compile time, not at run
time.

1 + x + 2 x + 3

Constants may be hidden, such as n = nx *ny.

back skip examples
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Classical Techniques: Constant propagation

If a variable is assigned a constant value, then subsequent uses of that
variable can be replaced by the constant as long as no intervening
assignment has changed the value of the variable.

back skip examples
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Classical Techniques: Algebraic simplification and re-association

Simplifications use algebraic properties or particular operator-operand
combinations to simplify expressions. Re-association refers to using
properties such as associativity, commutativity and distributivity to
rearrange an expression to enable other optimisations such as
constant-folding or loop-invariant code motion.

The most obvious of these are the optimisations that can remove
useless instructions entirely via algebraic identities.

back skip examples
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Operator Strength Reduction

Operator strength reduction replaces an operator by a “less
expensive” one.

back skip examples
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Copy Propagation

This optimisation is similar to constant propagation, but generalised
to non-constant values. If we have an assignment a = b in our
instruction stream, we can replace later occurrences of a with b
(assuming there are no changes to either variable in-between).

This may be a particularly valuable optimisation since it may be able
to eliminate a large number of instructions that only serve to copy
values from one variable to another.

back skip examples
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Dead Code Elimination

If an instruction’s result is never used, the instruction is considered
“dead” and can be removed from the instruction stream.

Dead code frequently results from previous editing operations.

back skip examples
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Common Subexpression Elimination

Two operations are common if they produce the same result. Note:
they may appear in very different form!

back skip examples
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Loop Uncoiling

Loop uncoiling, or loop unrollment replaces two or more loop
iterations by explicit statements.

back skip examples
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Global Optimisations, Data-Flow Analysis

The additional analysis the optimiser must do to perform
optimisations across basic blocks is called data-flow analysis.

back skip examples
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Code Motion

Code motion unifies sequences of code common to one or more basic
blocks to reduce code size and potentially avoid expensive
re-evaluation. The most common form of code motion is
loop-invariant code motion that moves statements that evaluate to
the same value every iteration of the loop to somewhere outside the
loop.

back skip examples
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Machine Optimisations

In this pass, specific machines features (specialised instructions,
hardware pipeline abilities, register details) are taken into account to
produce code optimised for this particular architecture.

back skip examples
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Register and Memory Allocation

Registers are the fastest kind of memory available, but as a resource,
they can be scarce. The problem is how to minimise traffic between
the registers and what lies beyond them in the memory hierarchy to
eliminate time wasted sending data back and forth across the bus and
the different levels of caches.

back skip examples
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Instruction Scheduling

Another extremely important optimisation of the final code generator
is instruction scheduling. Because many machines have some sort of
pipelining capability, effectively harnessing that capability requires
judicious ordering of instructions.

back skip examples
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Peephole Optimisations

Peephole optimisation is a pass that operates on the target assembly
and only considers a few instructions at a time (through a
”peephole”) and attempts to do simple, machine dependent code
improvements. For example, peephole optimisations might include
elimination of multiplication by 1, elimination of load of a value into a
register when the previous instruction stored that value from the
register to a memory location, or replacing a sequence of instructions
by a single instruction with the same effect. back skip examples
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Optimisation in R

Support tools for most standard techniques are available in
library(compiler).

Some are supported in the byte code compiler (under development).
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Optimisation

R Built-in Optimisations
Function Arguments
Global Assignments and Environments
Compilation

Profiling
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Function Arguments in R

As a rule, parameters are passed by value. (i.e. copied. Beware! This means
memory allocation and copying.)

The main exception are environments. These are not copied, but passed as
a reference. You can make use of this and pass use information efficiently by
just passing its name and the environment to look it up.

R uses lazy evaluation: if a value needs to be calculated, the evaluated
expression needed to calculate it is passed, together with the environment
where the evaluation should take place. This is called a promise.

R can pass a value by reference, if it can prove that it is unchanged during
evaluation. This is used extensively for .Internal functions.

G. Sawitzki: Profiling April 3, 2012 85

Computing Background
Optimisation

R Built-in Optimisations
Profiling

References
Function Arguments
Compilation

Function Arguments

Function Types

Functions come in three types

Usual function closures: arguments are matched and a matched call is constructed.

Specials: arguments are not evaluated before C code is called. Low Overhead.

Builtins:.

.Primitive can be used to call internal C functions with minimal interface.

Other internal functions are interfaced using .Internal.

See list in R Internals Ch 2 .
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Internal Functions

If an .Internal function can be used, prefer it over other solutions.
It may be cheaper.

Do not spend time optimising something .Internal. (And do not
spend time optimising it. This is something already in the optimised
libraries.)

If only information from a variable descriptor is used by a function,
assume the function is implemented as .Internal.
For example, length() is .Internal (and cheap to call).
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Parameter Passing Exceptions

By default, function arguments are passed by value.

There are few exceptions defined by in the language:

environments

promises

. . .
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Parameter Passing Exceptions: Environments

Each function definition, and each function call defines its
environment.

Environments can be generated explicitly using
new.environment().

Objects can be assigned to an environment using the environment in
function assign().

For an in-depth discussion of the possibilities, see (Gentleman and
Ihaka, 2000).
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Example: Cache for Fibonacci

Creating a persistent local environment for a function to implement a
persistent memory:
fibonacci <- local({

memo <- c(1, 1, rep(NA, 100))

f <- function(x) {

if(x == 0) return(0)

if(x < 0) return(NA)

if(x > length(memo)) stop("’x’ too big for implementation")

if(!is.na(memo[x])) return(memo[x])

ans <- f(x-2) + f(x-1)

memo[x] <<- ans

ans}

})

From P. Burns, R Inferno, Circle 6.1
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Byte code

Installing an intermediate step between interpreted code and
compilation is an active area in the R development. (Keyword
”byte code”)

Compilation needs a controlled environment. Current approach;
name spaces as used for packages.

Good news: pre-compilation comes for free for packages (if
implemented on your implementation).
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Byte Code

The byte code compiler needs hints about the function interface used
for external access.

These hints are part of the declaration of a name space that must be
included with the package. (See Writing R extensions)
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Byte Code

If a package is already in the repository in byte-compiled form, you get it for free.
As of R 2.14, the basic package are byte-compiled.

If it is not byte-compiled, to install a package using the byte-compiler, use the
command option

R CMD INSTALL ...--byte-compile ...

or use

install.packages(file, repos=NULL, type="source",

INSTALL opts="--byte-compile")

If you are building a package, use
ByteCompile: true

in the DESCRIPTION file to get it byte-compiled by default.
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Byte Code

To generate a byte-compiled version of an individual function, use
library(compiler) and function cmpfun().
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Example

As a case study, we use an algorithm to calculate the shorth functional, a
non-parametric functional for the analysis of one-dimensional data. The
complexity of the algorithm keeps time consumption annoying, yet still in a range
allowing for a scalable variation of sample sizes.

Shorth length Sα(x) at x covering α: minimum length of an interval containing x
and covering a proportion α of the data.

Sα(x) = min{|I ] : x ∈ I ;P(I ) ≥ α}

Shorth plot: Plot x 7→ −Sα(x) for a collection of coverages α.

For the implementation, see <http://lshorth.r-forge.r-project.org/>.
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Case Study: Byte Code

No byte-code
> n <- 100

> system.time(lshorth(rnorm(n)))

user system elapsed

0.022 0.002 0.027

> n <- 1000

> system.time(lshorth(rnorm(n)))

0.124 0.008 0.134

> n <- 10000

> system.time(lshorth(rnorm(n)))

2.213 0.028 2.237

Byte-code
> n <- 100

> system.time(lshorth(rnorm(n)))

user system elapsed

0.017 0.002 0.021

> n <- 1000

> system.time(lshorth(rnorm(n)))

0.114 0.015 0.131

> n <- 10000

> system.time(lshorth(rnorm(n)))

1.135 0.030 1.167

Moderate until upto 50% gain in total job turnaround time.
Note: base libraries have already been byte-compiled.
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<http://lshorth.r-forge.r-project.org/>
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A Case Study: Melbourne Data

Melbourne Temperature Data

This example will be used for the remainder of this section.

library(lshorth)

melbourne3 <- data.frame(read.csv

("/data/melbourne/temp v pressure 3 hourly intervals.csv"))

dt<-as.POSIXlt(melbourne3[,1])#lenght 9??

# 15h data

melbourne15h <- melbourne3[dt$hour==15,]

melbourne15h$TomorrowT <- c(melbourne15h[-1,2], NA)

thigh <- c(32,99); tmed <- c(25.6,32); tlow <- c(21.7,25.6)
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A Case Study: Melbourne Data

Melbourne Temperature Data

plotcond <- function(tlim,plim,main=NULL,...){

incond <-melbourne15h[

(melbourne15h[,2]>= tlim[1]) &

(melbourne15h[,2]<= tlim[2]) &

(melbourne15h[,3]>= plim[1]) &

(melbourne15h[,3]<= plim[2]),]

diffT <- incond[,4]-incond[,2]

diffT <- diffT[is.finite(diffT)]

ls <- lshorth(diffT, probs=c( 0.125,0.25,0.5,0.75, 0.875),plot=FALSE)

if (is.null(main)){main=paste("T ",tlim,"p ",plim, sep=" ")}

plot(ls, frame.plot=FALSE, main=main, cex=1.5, ...)

}
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A Case Study: Melbourne Data

qtemp <- quantile(melbourne15h[,2], probs=seq(0,1,0.125)) # 1..9

qpress <- quantile(melbourne15h[,3], probs=seq(0,1,0.125))

plotcond3 <- function(tlim,main=NULL,...){

incond <-melbourne15h[ (melbourne15h[,2]>= tlim[1])

& (melbourne15h[,2]<= tlim[2]),]

qpress<-quantile(incond[,3], probs=seq(0,1,1/6),na.rm=TRUE)

plotcond(tlim, plim=c(qpress[6],9999),

main=paste("T: ", tlim[1], "... ","C p:",

qpress[6],"... ", "hpa", sep=""), legend=NULL)

plotcond(tlim, plim=c(qpress[3],qpress[4]),

main=paste("T: ", tlim[1], "...",tlim[2],"C p:",

qpress[3],"...",qpress[4], "hpa", sep=""), legend=NULL)

plotcond(tlim, plim=c(0,qpress[2]),

main=paste("T: ", tlim[1], "...",tlim[2],"C p:",

"...",qpress[2], "hpa", sep=""), legend=NULL)

}
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A Case Study: Melbourne Data

Melbourne Temperature Data

bigplot <- function() {

oldpar <- par(mfrow=c(3,3),

cex.lab =1.5, cex.main =1.5)

plotcond3(tlim=thigh)

plotcond3(tlim= tmed)

plotcond3(tlim= tlow)

par(oldpar)

}

G. Sawitzki: Profiling April 3, 2012 101

Computing Background
Optimisation

R Built-in Optimisations
Profiling

References

A Case Study: Melbourne Data
Profiling Time
Profiling Memory

A Case Study: Melbourne Data

Melbourne Temperature Data

> system.time(bigplot())

user system elapsed

0.377 0.021 0.405
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Profiling Time: Rprof()

Rprof Enable Profiling of R’s Execution

Description

Enable or disable profiling of the execution of R expressions.

Usage

Rprof(filename = "Rprof.out", append = FALSE, interval = 0.02,

memory.profiling=FALSE)

skip help
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Profiling Time: Rprof()

Usage

Rprof(filename = "Rprof.out", append = FALSE, interval = 0.02,

memory.profiling=FALSE)

Arguments

filename The file to be used for recording the profiling results. Set to
NULL or "" to disable profiling.

append logical: should the file be over-written or appended to?
interval real: time interval between samples.
memory.profiling logical: write memory use information to the file?

skip help
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Profiling Time: Rprof()

Details

Enabling profiling automatically disables any existing profiling to another or the same
file.
Profiling works by writing out the call stack every interval seconds, to the file
specified. Either the summaryRprof function or the wrapper script R CMD Rprof can
be used to process the output file to produce a summary of the usage; use R CMD

Rprof --help for usage information.
How time is measured varies by platform: on a Unix-alike it is the CPU time of the R
process, so for example excludes time when R is waiting for input or for processes run
by system to return.
Note that the timing interval cannot usefully be too small: once the timer goes off,
the information is not recorded until the next timing click (probably in the range
1–10msecs).
Functions will only be recorded in the profile log if they put a context on the call
stack (see sys.callssys.calls). Some primitive functions do not do so: specifically
those which are of type "special" (see the ‘R Internals’ manual for more details).
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Profiling Time: SummaryRprof()

summaryRprof Summarise Output of R Sampling Profiler

Description

Summarise the output of the Rprof function to show the amount of time used by
different R functions.

Usage

summaryRprof(filename = "Rprof.out", chunksize = 5000,

memory=c("none","both","tseries","stats"),

index=2, diff=TRUE, exclude=NULL)

skip help
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Profiling Time: SummaryRprof()

Usage

summaryRprof(filename = "Rprof.out", chunksize = 5000,

memory=c("none","both","tseries","stats"),

index=2, diff=TRUE, exclude=NULL)

Arguments

filename Name of a file produced by Rprof()

chunksize Number of lines to read at a time
memory Summaries for memory information. See ‘Details’ below
index How to summarize the stack trace for memory information.

See ‘Details’ below.
diff If TRUE memory summaries use change in memory rather than

current memory
exclude Functions to exclude when summarizing the stack trace for

memory summaries

skip help
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Profiling Time: SummaryRprof()

Details

This function provides the analysis code for Rprof files used by R CMD Rprof.
As the profiling output file could be larger than available memory, it is read in blocks
of chunksize lines. Increasing chunksize will make the function run faster if
sufficient memory is available.
When called with memory.profiling = TRUE, the profiler writes information on
three aspects of memory use: vector memory in small blocks on the R heap, vector
memory in large blocks (from malloc), memory in nodes on the R heap. It also
records the number of calls to the internal function duplicate in the time interval.
duplicate is called by C code when arguments need to be copied. Note that the
profiler does not track which function actually allocated the memory.
With memory = "both" the change in total memory (truncated at zero) is reported
in addition to timing data.

skip help
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Profiling Time: SummaryRprof()

Details

With memory = "tseries" or memory = "stats" the index argument specifies how
to summarize the stack trace. A positive number specifies that many calls from the
bottom of the stack; a negative number specifies the number of calls from the top of
the stack. With memory = "tseries" the index is used to construct labels and may
be a vector to give multiple sets of labels. With memory = "stats" the index must
be a single number and specifies how to aggregate the data to the maximum and
average of the memory statistics. With both memory = "tseries" and memory =

"stats" the argument diff = TRUE asks for summaries of the increase in memory
use over the sampling interval and diff = FALSE asks for the memory use at the end
of the interval.

G. Sawitzki: Profiling April 3, 2012 109

Computing Background
Optimisation

R Built-in Optimisations
Profiling

References

A Case Study: Melbourne Data
Profiling Time
Profiling Memory

Profiling Time

Profiling Time

Rprof("lshorth_prof.txt", interval=0.002)

bigplot()

Rprof(NULL)

summaryRprof("lshorth_prof.txt")
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Profiling Time: SummaryRprof() I

> summaryRprof("lshorth_prof.txt")

$by.self

self.time self.pct total.time total.pct

"axis" 0.088 34.65 0.088 34.65

"[.data.frame" 0.042 16.54 0.066 25.98

"sort.int" 0.030 11.81 0.030 11.81

"lshorth" 0.020 7.87 0.074 29.13

"[.factor" 0.020 7.87 0.020 7.87

"which.min" 0.018 7.09 0.022 8.66

"title" 0.018 7.09 0.018 7.09

":" 0.004 1.57 0.004 1.57

"&" 0.004 1.57 0.004 1.57

"plot.new" 0.004 1.57 0.004 1.57

"plotcond" 0.002 0.79 0.234 92.13

. . .

G. Sawitzki: Profiling April 3, 2012 111

Computing Background
Optimisation

R Built-in Optimisations
Profiling

References

A Case Study: Melbourne Data
Profiling Time
Profiling Memory

Profiling Time: SummaryRprof() I

$by.total

total.time total.pct self.time self.pct

"bigplot" 0.254 100.00 0.000 0.00

"plotcond3" 0.254 100.00 0.000 0.00

"plotcond" 0.234 92.13 0.002 0.79

"plot.lshorth" 0.112 44.09 0.000 0.00

"plot" 0.112 44.09 0.000 0.00

"axis" 0.088 34.65 0.088 34.65

"lshorth" 0.074 29.13 0.020 7.87

"[.data.frame" 0.066 25.98 0.042 16.54

"[" 0.066 25.98 0.000 0.00

"sort.int" 0.030 11.81 0.030 11.81

"sort.default" 0.030 11.81 0.000 0.00

"sort" 0.030 11.81 0.000 0.00

"which.min" 0.022 8.66 0.018 7.09
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Profiling Time: SummaryRprof() II

"[.factor" 0.020 7.87 0.020 7.87

"title" 0.018 7.09 0.018 7.09

"Axis.default" 0.018 7.09 0.000 0.00

"Axis" 0.018 7.09 0.000 0.00

"rug" 0.018 7.09 0.000 0.00

":" 0.004 1.57 0.004 1.57

"&" 0.004 1.57 0.004 1.57

"plot.new" 0.004 1.57 0.004 1.57

">" 0.002 0.79 0.002 0.79

"par" 0.002 0.79 0.002 0.79

"lines.default" 0.002 0.79 0.000 0.00

"lines" 0.002 0.79 0.000 0.00

"plot.xy" 0.002 0.79 0.000 0.00

$sample.interval

[1] 0.002

$sampling.time

[1] 0.254
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Profiling Time

Using Rprof

The profile is easily scattered with garbage, and there is no semantic
filter.

Use Rprof() selectively for zones of interest, do several runs using
the append option.
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Profiling Time

Profiling Time and Memeory

Rprof("lshorth_profm.txt",

interval=0.002,

memory.profiling=TRUE)

bigplot()

Rprof(NULL)

summaryRprof("lshorth_profm.txt", memory="both")
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Profiling Time I

> summaryRprof("lshorth_profm.txt", memory="both")

$by.self

self.time self.pct total.time total.pct mem.total

"axis" 0.092 39.32 0.092 39.32 7.7

"lshorth" 0.028 11.97 0.044 18.80 24.1

"[.data.frame" 0.024 10.26 0.056 23.93 7.6

"lapply" 0.022 9.40 0.022 9.40 0.0

"[.factor" 0.018 7.69 0.018 7.69 2.5

"title" 0.018 7.69 0.018 7.69 0.1

"which.min" 0.012 5.13 0.012 5.13 2.6

"<=" 0.008 3.42 0.008 3.42 0.0

"&" 0.004 1.71 0.004 1.71 1.0

"<" 0.004 1.71 0.004 1.71 6.1

"plot.new" 0.002 0.85 0.002 0.85 1.4

"sys.call" 0.002 0.85 0.002 0.85 0.3

$by.total
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Profiling Time II

total.time total.pct mem.total self.time self.pct

"bigplot" 0.234 100.00 40.9 0.000 0.00

"plotcond3" 0.234 100.00 40.9 0.000 0.00

"plotcond" 0.218 93.16 39.7 0.000 0.00

"plot.lshorth" 0.134 57.26 9.2 0.000 0.00

"plot" 0.134 57.26 9.2 0.000 0.00

"axis" 0.092 39.32 7.7 0.092 39.32

"[.data.frame" 0.056 23.93 7.6 0.024 10.26

"[" 0.056 23.93 7.6 0.000 0.00

"lshorth" 0.044 18.80 24.1 0.028 11.97

"lapply" 0.022 9.40 0.0 0.022 9.40

"lines.default" 0.022 9.40 0.0 0.000 0.00

"lines" 0.022 9.40 0.0 0.000 0.00

"par" 0.022 9.40 0.0 0.000 0.00

"plot.xy" 0.022 9.40 0.0 0.000 0.00

"unlist" 0.022 9.40 0.0 0.000 0.00

"[.factor" 0.018 7.69 2.5 0.018 7.69

"title" 0.018 7.69 0.1 0.018 7.69

"Axis.default" 0.016 6.84 0.4 0.000 0.00
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Profiling Time III

"Axis" 0.016 6.84 0.4 0.000 0.00

"rug" 0.016 6.84 0.4 0.000 0.00

"which.min" 0.012 5.13 2.6 0.012 5.13

"<=" 0.008 3.42 0.0 0.008 3.42

"&" 0.004 1.71 1.0 0.004 1.71

"<" 0.004 1.71 6.1 0.004 1.71

"plot.new" 0.002 0.85 1.4 0.002 0.85

"sys.call" 0.002 0.85 0.3 0.002 0.85

"%in%" 0.002 0.85 0.3 0.000 0.00

"match" 0.002 0.85 0.3 0.000 0.00

$sample.interval

[1] 0.002

$sampling.time

[1] 0.234
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Profiling Time

Using Rprof

Memory is attributed to the function active at the end of the
sampling interval.

This may be misleading.
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Profiling Time

Profiling Functions

Rprof(filename = "Rprof.out",

append = FALSE,

interval = 0.02,

memory.profiling=FALSE)

summaryRprof(filename = "Rprof.out",

chunksize = 5000,

memory=c("none","both","tseries","stats"),

index=2, diff=TRUE, exclude=NULL)

Summaries for time information.
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Profiling Memory: Rprofmem() I

Rprofmem Enable Profiling of R’s Memory Use

Description

Enable or disable reporting of memory allocation in R.

Usage

Rprofmem(filename = "Rprofmem.out", append = FALSE, threshold = 0)

skip help
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Profiling Memory: Rprofmem()

Usage

Rprofmem(filename = "Rprofmem.out", append = FALSE, threshold = 0)

Arguments

filename The file to be used for recording the memory allocations. Set
to NULL or "" to disable reporting.

append logical: should the file be over-written or appended to?
threshold numeric: allocations on R’s ”large vector” heap larger than this

number of bytes will be reported.

skip help
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Profiling Memory: Rprofmem()

Details

Enabling profiling automatically disables any existing profiling to another or the same
file.
Profiling writes the call stack to the specified file every time malloc is called to
allocate a large vector object or to allocate a page of memory for small objects. The
size of a page of memory and the size above which malloc is used for vectors are
compile-time constants, by default 2000 and 128 bytes respectively.
The profiler tracks allocations, some of which will be to previously used memory and
will not increase the total memory use of R.
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Profiling Memory: Rprofmem()

Profiling Memory

Rprofmem("lshorth_profmem.txt")

bigplot()

Rprofmem(NULL)

Note: at sampling time, only the size of memory requested is known.
There is no variable name associated to it.

To identify the objects, given their size, you can use a code snippet as
in
## find the 10 largest objects in the base package

z <- sapply(ls("package:base"), function(x)

object.size(get(x, envir = baseenv())))

as.matrix(rev(sort(z))[1:10])s

A summary() method for Rprofmem() is still under construction.
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Profiling Memory: Rprofmem()

> noquote(readLines("lshorth_profmem.txt", n=15))

[1] 1104 :"bigplot"

[2] 4872 :"bigplot"

[3] 4872 :"bigplot"

[4] 1064 :"bigplot"

[5] 280 :"bigplot"

[6] 816 :"bigplot"

[7] 1584 :"bigplot"

[8] 384 :"bigplot"

[9] 256 :"bigplot"

[10] new page:"bigplot"

[11] 456 :"<Anonymous>" "par" "bigplot"

[12] 1728 :"<Anonymous>" "par" "bigplot"

[13] 1728 :"<Anonymous>" "par" "bigplot"

[14] 1064 :"<Anonymous>" "par" "bigplot"

[15] 328 :"<Anonymous>" "par" "bigplot"
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Profiling Memory: Rprofmem() I

Profiling Memory

A memory threshold can be installed to avoid uninformative events.

Rprofmem("lshorth_profmem1024.txt", threshold=1024)

bigplot()

Rprofmem(NULL)
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Profiling Memory: Rprofmem() I

> noquote(readLines("lshorth_profmem1024.txt", n=30))

[1] 76512 :"[.data.frame" "[" "plotcond3" "bigplot"

[2] 76512 :"[.data.frame" "[" "plotcond3" "bigplot"

[3] 76512 :"[.data.frame" "[" "plotcond3" "bigplot"

[4] 76512 :"[.data.frame" "[" "plotcond3" "bigplot"

[5] 76512 :"NextMethod" "[.factor" "[" "[.data.frame" "[" "plotcond3" "bigplot"

[6] 2824 :"NextMethod" "[.factor" "[" "[.data.frame" "[" "plotcond3" "bigplot"

[7] 2824 :"NextMethod" "[.factor" "[" "[.data.frame" "[" "plotcond3" "bigplot"

[8] 2824 :"[.factor" "[" "[.data.frame" "[" "plotcond3" "bigplot"

[9] 1231360 :"[.factor" "[" "[.data.frame" "[" "plotcond3" "bigplot"

[10] 2824 :"[.factor" "[" "[.data.frame" "[" "plotcond3" "bigplot"

[11] 1231360 :"[.factor" "[" "[.data.frame" "[" "plotcond3" "bigplot"

[12] 2824 :"[.data.frame" "[" "plotcond3" "bigplot"

[13] 1231360 :"[.data.frame" "[" "plotcond3" "bigplot"

[14] 76512 :"[.data.frame" "[" "plotcond3" "bigplot"

[15] 2824 :"[.data.frame" "[" "plotcond3" "bigplot"

[16] 5608 :"[.data.frame" "[" "plotcond3" "bigplot"
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Profiling Memory: Rprofmem() II

[17] 76512 :"[.data.frame" "[" "plotcond3" "bigplot"

[18] 2824 :"[.data.frame" "[" "plotcond3" "bigplot"

[19] 5608 :"[.data.frame" "[" "plotcond3" "bigplot"

[20] 76512 :"[.data.frame" "[" "plotcond3" "bigplot"

[21] 2824 :"[.data.frame" "[" "plotcond3" "bigplot"

[22] 5608 :"[.data.frame" "[" "plotcond3" "bigplot"

[23] 76512 :"[.data.frame" "[" "plotcond3" "bigplot"

[24] 2824 :"[.data.frame" "[" "plotcond3" "bigplot"

[25] 2824 :"[.data.frame" "[" "plotcond3" "bigplot"

[26] 2824 :"[.data.frame" "[" "plotcond3" "bigplot"

[27] 8232 :"anyDuplicated.default" "anyDuplicated" "[.data.frame" "[" "plotcond3" "bigplot"

[28] 2824 :"[.data.frame" "[" "plotcond3" "bigplot"

[29] 2824 :"[.data.frame" "[" "plotcond3" "bigplot"

[30] 1231360 :"[.data.frame" "[" "plotcond3" "bigplot"
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Profiling Memory

Duplicates

The internal function duplicate is called when two objects share the
same memory and one of them is modified. It is a major cause of
hard-to-predict memory use in R.

It is a major cause of hard-to-predict memory use in R.

tracemem() can be used to track the creation of duplicates.
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Profiling Memory: tracemem()

tracemem Trace Copying of Objects

Description

This function marks an object so that a message is printed whenever the internal
function duplicate is called. This happens when two objects share the same memory
and one of them is modified. It is a major cause of hard-to-predict memory use in R.

Usage

tracemem(x)

untracemem(x)

retracemem(x, previous = NULL)
skip help
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Profiling Memory: tracemem()

Usage

tracemem(x)

untracemem(x)

retracemem(x, previous = NULL)

Arguments

x An R object, not a function or environment or NULL.
previous A value as returned by tracemem or retracemem.

skip help
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Profiling Memory: tracemem()

Details

This functionality is optional, determined at compilation, because it makes R run a
little more slowly even when no objects are being traced. tracemem and untracemem

give errors when R is not compiled with memory profiling; retracemem does not (so
it can be left in code during development).
When an object is traced any copying of the object by the C function duplicate or
by arithmetic or mathematical operations produces a message to standard output.
The message consists of the string tracemem, the identifying strings for the object
being copied and the new object being created, and a stack trace showing where the
duplication occurred. retracemem() is used to indicate that a variable should be
considered a copy of a previous variable (e.g. after subscripting).
The messages can be turned off with tracingState.
It is not possible to trace functions, as this would conflict with trace and it is not
useful to trace NULL, environments, promises, weak references, or external pointer
objects, as these are not duplicated.
These functions are primitive.
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Profiling Memory: tracemem()

Tracing Memory

tracemem(thigh)

bigplot()

untracemem(thigh)
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Profiling Memory: Rprofmem() I

Profiling Memory

> tracemem(thigh)

[1] "<0x1090a7188>"

ToDo 7: Example
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