

Supplement to

Computational Statistics

An Introduction to

Günther Sawitzki

StatLab Heidelberg

December 30, 2011

http://sintro.r-forge.r-project.org/

Introduction

This is a supplement to

G. Sawitzki

Computational Statistics: An Introduction to R

CRC Press, Boca Raton, 2009

ISBN: 978 14 20 08 6782

The supplement contains additions, corrections and other supplementary material.

The complete reference appendix of the book is included, with kind permission of CRC
Press.

The most recent version of this supplement is on the web site accompanying this book:

http://sintro.r-forge.r-project.org/

Additional material and updates will be available at the web site.

This version: December 30, 2011

v

http://sintro.r-forge.r-project.org/

Contents

Introduction v

1 Basic Data Analysis 1

1.1 R Programming Conventions 1

1.5 R Complements 2

1.5.3 Functions 2

Vectorisation 2

Compilation 7

1.5.6 Search Paths, Frames and Environments 8

2 Regression 13

2.2.4 Least Squares Estimation 13

2.2.5 Regression Diagnostics 20

2.2.6 Gauss-Markov Estimator 28

2.5 Beyond Linear Regression 30

2.5.1 Generalised Linear Models 30

2.6 R Complements 31

2.6.4 Classes and Polymorphic Functions 31

3 Comparisons 33

3.1 Shift/Scale Families, and Stochastic Order 33

3.3 Tests for Shift Alternatives 34

4 Dimensions 1, 2, 3, . . . , ∞ 35

4.1 R Complements 35

vii

viii CONTENTS

R as a Programming Language and Environment Suppl.A-41

A.1 Help and Information Suppl.A-41

A.2 Names and Search Paths Suppl.A-43

A.3 Administration and Customisation Suppl.A-45

A.4 Basic Data Types Suppl.A-46

A.5 Output for Objects Suppl.A-48

A.6 Object Inspection Suppl.A-49

A.7 System Inspection Suppl.A-50

A.8 Complex Data Types Suppl.A-51

A.9 Accessing Components Suppl.A-53

A.10 Data Manipulation Suppl.A-56

A.11 Operators Suppl.A-59

A.12 Functions Suppl.A-60

A.13 Debugging and Profiling Suppl.A-62

A.14 Control Structures Suppl.A-64

A.15 Input and Output to Data Streams; External Data Suppl.A-66

A.16 Libraries, Packages Suppl.A-69

A.17 Mathematical Functions; Linear Algebra Suppl.A-71

A.18 Model Descriptions and Diagnostics Suppl.A-72

A.19 Graphic Functions Suppl.A-75

A.19.1 High-Level Graphics Suppl.A-75

A.19.2 Low-Level Graphics Suppl.A-76

A.19.3 Annotations and Legends Suppl.A-77

A.19.4 Graphic Parameters and Layout Suppl.A-78

A.20 Elementary Statistical Functions Suppl.A-80

A.21 Distributions, Random Numbers, Densities. . . Suppl.A-81

A.22 Computing on the Language Suppl.A-84

References 85

Functions and Variables by Topic 87

Function and Variable Index 93

Subject Index 97

CHAPTER 1

Basic Data Analysis

1.1 R Programming Conventions

R Conventions

Objects The basic elements in R are objects. Objects have types, for
example logical or integer. Objects can have a class attribute
specifying more complex type information.

Example: The basis objects in R are vectors.

Names R objects can have names, by which they can be accessed.
Names begin with a letter or a dot, followed by a sequence of
letters, digits, or the special characters _ or .

Examples: x

y_1

Lower- and uppercase are treated as different.

Examples: Y87

y87

Assignments Assignments have the form

Syntax: name <- value or alternatively name = value.

Example: a <- 10

x <- 1:10

Assignments can also be used in the form value -> name.

A variant name <<- value is discussed later (Section 1.5.6
(page 8)).

Queries If only the name of an object is entered, the value of the object
is returned.

Example: x

(cont.)→

1

2 BASIC DATA ANALYSIS

R Conventions

(cont.)

Indices Vector components are accessed by index. The lowest index is
1.

Example: x[3]

The indices can be specified directly, or using symbolic names or
rules.

Examples:

a[1] the first element

x[-3] all elements except the third

x[x^2 < 10] all elements where x2 < 10

Indices Individual vector components are accessed by index.

Example: x[[3]]

The index can be specified directly, or using symbolic names or
rules.

Examples:

a[[1]] the first element

x[[-3]] error: attempt to access
more than one element.

1.5 R Complements

1.5.3 Complements: Functions

Vectorisation

In R, functions preferably are vectorised. If reasonable, they should accept vectors as
parameters, and if appropriate, they should return a vector as result. This is a conve-
nience for calling the function. In some contexts, a function can only be used if it is
vectorised. So, for example, curve() or integrate() only accept a function passed as
first argument if it is vectorised.

Unfortunately there is no easy way to check whether a function is vectorised. You must
rely on the documentation provided by the author, check the source code, or run some
test examples.

If you are providing a function, please document clearly where and how it is vectorised.

You can check whether an argument or any object is a vector using is.vector() .

R COMPLEMENTS 3

Input
v <- -1:3

is.vector(v)

Output
[1] TRUE

Remember that in R numbers are just vectors of length 1. So is.vector(7) will return
a TRUE value.

Operators in R are functions, and the default operators are vectorised. Most elementary
functions are vectorised as well.

Input
sqrtv<-sqrt(v)

is.vector(sqrtv)

Output
[1] TRUE

Input
sqrtv

Output
[1] NaN 0.000000 1.000000 1.414214 1.732051

Note that type conversion to complex is not carried out by default. To get a complex
square root, you would need to use sqrtv<-sqrt(as.complex(v)).

The first example where vectorisation usually breaks in your code are logical conditions,
because if is not vectorised. So the following line takes a vector v, but returns only a
vector of length 1.

Input
sqrtv <- if (v >=0) sqrt(v) else 0

is.vector(sqrtv)

Output
[1] TRUE

Input
sqrtv

Output
[1] 0

4 BASIC DATA ANALYSIS

If you want to implement a function

f(x) =

0 x < 0

sqrt(x) x ≥ 0

the definition

Input
sqrt0 <- function(x){if (x >=0) sqrt(x) else 0}

does not work as hoped if x is a vector.

In this special case, you can use ifelse() which provides a vectorised result.

Exercise 1.1 Vectorisation

Write sqrt0() as a vectorised function using ifelse() .

In more general cases, where a vectorised variant is not available, you have to iterate
over the components of x. For performance reasons, the iterators provided with R (such
as those listed in Appendix A.9 Accessing Components (page Suppl.A-53)) are to be
preferred over for -loop on the indices or other ad-hoc solutions.

Example 1.1: Vectorisation with iterators

Input
sqrt1 <- function(v) {

sapply(v,

function(x) {

if (x >=0) sqrt(x) else 0}, simplify=TRUE

)

}

To illustrate some technical tricks here, we included the function definition as an anony-
mous function inline. sapply() only relies on the position of the first argument. Argu-
ment names do not matter. The elements of v are matched to the formal first argument,
named x in this example.

Of course it is good programming practice to armour a general purpose function with
guards that check for the appropriate types.

R COMPLEMENTS 5

Exercise 1.2 Vectorisation

Enhance sqrt1() above to check that the type of v can be handled
correctly. What are the example data types you are using in your
test battery?

To facilitate vectorisation, a function Vectorize() is provided. Vectorize() generates
an environment (see section Section 1.5.6 (page 8)) and hides your original function
there as an object called FUN. It then generates a general purpose wrapper to check the
arguments and provides vectorisation on selected arguments (See Example 1.2 (page 5)).

Example 1.2: Vectorize

Input
sqrt2 <- Vectorize(sqrt0)

sqrt2

Output
function (x)

{

args <- lapply(as.list(match.call())[-1L], eval, parent.frame())

names <- if (is.null(names(args)))

character(length(args))

else names(args)

dovec <- names %in% vectorize.args

do.call("mapply", c(FUN = FUN, args[dovec], MoreArgs = list(args[!dovec]),

SIMPLIFY = SIMPLIFY, USE.NAMES = USE.NAMES))

}

<environment: 0x10c2a36b0>

Input
ls(environment(sqrt2))

Output
[1] "arg.names" "FUN" "FUNV" "SIMPLIFY"

[5] "USE.NAMES" "vectorize.args"

Input
environment(sqrt2)$FUN

Output
function(x){if (x >=0) sqrt(x) else 0}

Vectorize() is a general purpose tool. If you can provide a special case solution, this
may be a chance for optimisation. On the long run, general purpose support for vectori-

6 BASIC DATA ANALYSIS

sation may be enhanced in R. On the other side, more optimisations will be built into
the base machine which may make vectorisation less critical. But for now, vectorisation
is a chance for optimisation in your code.

R COMPLEMENTS 7

Compilation

As of R version 2.13, R supports compilation and optimisation on a compiler level, and
with version 2.14 this is widely used for many packages.

The basic packages already come in byte compiled form as of version 2.14. No further
action is necessary.

Additional packages may come in original (interpretable) form, or in compiled form. A
listing of a function in compiled form will show it marked as bytecode at the end of the
listing.

Uncompiled packages can be compiled on demand by using install.packages() with
appropriate options method="source", INSTALL_opts="--byte-compile".

Usage

install.packages(pkgs, lib, repos = getOption("repos"),

contriburl = contrib.url(repos, type),

method, available = NULL, destdir = NULL,

dependencies = NA, type = getOption("pkgType"),

configure.args = getOption("configure.args"),

configure.vars = getOption("configure.vars"),

clean = FALSE, Ncpus = getOption("Ncpus", 1L),

libs_only = FALSE, INSTALL_opts, ...)

Arguments

pkgs character vector of the names of packages whose current versions
should be downloaded from the repositories.

If repos = NULL, a character vector of file paths of ‘.tar.gz’ files.
These can be source archives or binary package archive files (as
created by R CMD build --binary). Tilde-expansion will be done
on the file paths.

If this is missing or a zero-length character vector, a listbox of
available packages is presented where possible.

. . .

INSTALL_opts an optional character vector of additional option(s) to be passed
to R CMD INSTALL for a source package install. E.g. c("--html",
"--no-multiarch"). Use INSTALL_opts="--byte-compile" for
compilation

To compile a package and install it on command level, use: R CMD INSTALL

Usage: R CMD INSTALL [options] pkgs

Options:

...

--byte-compile byte-compile R code

...

8 BASIC DATA ANALYSIS

If you are writing a package, you can mark it for compilation upon build by inserting

ByteCompile=TRUE

in the Description file.

Individual functions can be compiled by using cmpfun() in library(compiler). Other
compilation facilities are available in library(compiler).

Byte-compiling can be used with various optimisation levels. These are subject to change.
The current default level is 2. Level 3 can be used with the functions provided in li-

brary(compiler), but should be used with caution.

1.5.6 Search Paths, Frames and Environments

To evaluate an expression, the formal terms occurring in the expression must be related
to actual terms which can be ultimately evaluated. This requires a search process. As
the system has evolved, this search process has become rather complex. We try to give a
description here, starting with a very simplified picture, and adding details and variations
one by one. This section goes into some technical details and can be skipped on first
reading.

In the R documentation, you find several terms which are closely related: frames, envi-
ronments, closures, The usage is not always consistent. In particular, environment
may be used in R documentation where frame would be used in older S terminology.
In R terminology, environments can be thought of as consisting of two things: a frame,
consisting of a set of symbol-value pairs, and an enclosure, a pointer to an enclosing
environment. We take the freedom here to define out own usage of these terms.

If you are starting R, several functions and variables are already pre-defined. These
come organised in a chain of environments. The chain starts with an invisible NULL
environment. Next "package:base" is the basic environment created upon start of the
system. Other environments are populated by loading packages. search() gives you a
list of the currently active search environments. searchpaths() gives you information
about the path to the underlying package, if appropriate. Using ls(), you can inspect
any other environment in this list down to "package:base". So ls("package:base")

gives you a list of the intestines.

For performance reasons, each of these environments is implemented as a data base,
called an environment in R terminology, and a reference to the predecessor environ-
ment. You can think of the data base as a list of names, but actually it contains support
for caching and other techniques to improve performance. Moreover this environment
does not only contain the name of functions and variables, but it contains name/value
pairs.

You start working on the top level. R provides a work space for you, the global environ-
ment. Functions and variables you define are added here. This work space environment

R COMPLEMENTS 9

be accessed as ".GlobalEnv" and ls(".GlobalEnv") should return a list of your func-
tions and variables. Just calling ls() should give the same the same result. ls.str()
gives you a look at the structure of each entry and its value.

The usual assigment name <- value assings the value to a variable name in the enclosing
environment, generating a new variable if name is not found there. The variant name <<-

value causes a search through the environment for an existing definition of the variable
being assigned in one of the environments in the search path.

The path can also be modified under program control. For example, a complex data
structure like a data.frame can be inserted in the search path using attach() . After
attaching, the components can be found directly. The components are removed from the
search path using detach() .

Input
search()

Output
[1] ".GlobalEnv" "package:lattice" "tools:RGUI"

[4] "package:stats" "package:graphics" "package:grDevices"

[7] "package:utils" "package:datasets" "package:methods"

[10] "Autoloads" "package:base"

Input
#ls()

expl <- data.frame(x=1:3, y= 11:13) # just an example

ls()

Output
[1] "expl"

So far, x is hidden in expl.

Input
try(x) # component not in search path

try(expl$x) # component accessible using full name

Output
[1] 1 2 3

Now we attach expl to the search paths.

Input
attach(expl)

search() # expl is added after .GlobalEnv

10 BASIC DATA ANALYSIS

Output
[1] ".GlobalEnv" "expl" "package:lattice"

[4] "tools:RGUI" "package:stats" "package:graphics"

[7] "package:grDevices" "package:utils" "package:datasets"

[10] "package:methods" "Autoloads" "package:base"

The global environment still only contains expl.

Input
ls()

Output
[1] "expl"

But now x is found by traversing the search paths

Input
try(x) # now in search path

Output
[1] 1 2 3

Input
ls("expl") # list objects in the environment attached

Output
[1] "x" "y"

An here we clean up again.

Input
detach(expl)

search()

Output
[1] ".GlobalEnv" "package:lattice" "tools:RGUI"

[4] "package:stats" "package:graphics" "package:grDevices"

[7] "package:utils" "package:datasets" "package:methods"

[10] "Autoloads" "package:base"

Input
ls()

Output
[1] "expl"

Input
try(x) # not in search path any more

R COMPLEMENTS 11

Functions are first class objects in R. Functions in R can have formal parameters. They
can also have local variables, and functions can be nested in R. As R is an interpreted
language, the effective environment can vary. In particular, there is an environment in
which a function is defined, and a (usually different) environment in which the function
is called. In R, the preference is that variables in a function are evaluated to the values
they have when the function is defined. This is called lexical scoping . An example is
given below.

In more detail, functions have three basic components: a formal argument list, a con-
taining environment, and a body. The combination of these three parts forms what is
called the function closure . This set defines the lexical scoping. The environment is
linking back to the enclosing environment at definition time.

When a variable is requested inside a function, it is first sought in the evaluation en-
vironment, then in the enclosure, the enclosure of the enclosure, etc.; once the global
environment or the environment of a package is reached, the search continues up the
search path to the environment of the base package. If the variable is not found there,
the search will proceed next to the empty environment, and will fail.

This construction allows for some optimisation. In general, variables are passed by value
in R, that is a local copy is generated for each function argument and R functions only
operate on the local copy. This causes some time and memory overhead for the copy
process. Internally, R uses a lazy evaluation scheme, that is an argument is only evaluated
if it is actually needed. Until then, the variable may be treated as a promise , defined
by an expression to be evaluated, and the environment to be used for evaluation. If the
R interpreter recognises that an argument is unchanged, the copy step may be omitted.

As a special case, environments are never copied, but passed “as is”. So if you have a
large data structure, it may be worth considering to hide it as part of the environment,
like in the following code fragment which makes use of lexical scoping:

Input
definef <- function (x,y, ...) {

setuphugedata <- function() {

some function using x, y, ...

}

myhugedata <- setuphugedata()

return(function () {

some function, possibly using myhugedata

return(myhugedata) # should be some condensed data

})

}

#called as

f <- definef(actualx, actualy, ...)

12 BASIC DATA ANALYSIS

The function Vectorize() discussed in Section 1.5.3 (page 2) is an example where this
facility is exploited.

After this, f() will be a function, accessing myhugedata without copy. For a detailed
discussion of lexical scoping and more examples, see [8].

At a later stage, a function may be called. This may be from the top level, or from within
another environment. When a function is called, a new environment is created, whose
enclosure is the environment from the function closure. The run time environment from
which a function is called is accessible using sys.calls() and sys.frame() .

Lexical scoping is the preferred (and default) scoping rule. But expression evaluation is
under complete control for the programmer. If you want to use the calling environment
as a scope, sys.frame() allows to accessing variables and functions by call order, and
other rules of scope then R’s preferred lexical scoping can be used.

The next detail to add is that on the package level, there is a possibility to fine-tune
search paths entries. A package may define a name space . Variables and functions are
entered into this name space. They may be exported, which will add a reference to the
enclosing environment.

With all these possibilities, it is possible that some names are redefined and thus hidden
in the search hierarchy. You can however regain hidden definitions by using an explicit
reference. So if you have accidentally defined pi <- 4 and later discovered that the
world is not square, you can access the definition of pi as given in the base package by
using base::pi.

CHAPTER 2

Regression

2.2.4 Least Squares Estimation

A first idea of estimation in a linear model can be gained from the following relation:
given X, we have E(Y) = Xβ. As X is a matrix, we cannot simply solve this relation
for β using a division by X. But we can expand the relation to X>E(Y) = X>Xβ.
X>X is a positive semi-definite symmetric matrix. If X has rank p, the full rank, this
matrix is invertible. In general at least a pseudo-inverse exists and we can calculate
(X>X)−X>E(Y) = β.1 This equation motivates the following estimator:

β̂ = (X>X)−X>Y. (2.1)

Using the model relation Y = Xβ + ε ?? and E(ε) = 0, in the full rank case we get

E(β̂) = E
((
X>X

)−
X> (Xβ + ε)

)
= β, (2.2)

so β̂ is an unbiased estimator for β. It is a topic in statistics lectures to discuss whether
there are other qualities of this estimator. The Gauss-Markov theorem is a theorem from
statistics characterising the estimator ??. We will come back to this estimator frequently.
We give it a name for reference: the Gauss-Markov estimator . In the case of a linear
model, such as the regression model, this estimator has a series of optimality properties.
For example, this estimator minimises the mean quadratic deviation, that is, it is a least
squares estimator in this model.

The least squares estimator for linear models is implemented as function lm() .

We generate an example data set to be used for illustration.

Input
x <- 1:100

err <- rnorm(100, mean = 0, sd = 10)

y <- 2.5*x + err

For this example data set, we get the least squares estimator using

1 HereX> means the transposed of the matrixX and (X>X)− denotes the (Penrose-Moore generalised)

inverse of (X>X).

13

14 REGRESSION

Example 2.1: Least Squares Estimator

Input
lm(y ~ x)

Output
Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

-0.3532 2.5223

Exercise 2.1

When we generated the data, we did not use a constant term. The
model specified for estimation, however, did not exclude the con-
stant term. Repeat the estimation using the model without a con-
stant term. Compare the results.

The estimator β̂ immediately yields an estimation m̂ for the function m in our original
model:

m̂(x) = x> · β̂.
The evaluation at the measurement points results in the vector of the fitted values
Ŷ = Xβ̂.

In our example, the fit gives a regression line. Using plot() we can plot the data points.
If we store the result of the regression, we can use it with abline() to add the regression
line.

REGRESSION 15

Example 2.2: Linear Model Plot
Input

lmres <- lm(y ~ x)

plot(x, y)

abline(lmres)

●
●

●
●

●

●

●

●

●●●●●
●
●

●●
●●

●●●
●

●●
●
●

●

●●

●●

●

●

●

●
●

●

●
●
●

●

●●

●●
●●

●

●

●

●

●

●

●

●
●

●●

●●●

●

●●

●●

●

●●
●
●

●
●

●
●
●●

●

●

●●

●
●●

●

●●
●

●●

●●

●●

●

●
●

●●

0 20 40 60 80 100

0
50

10
0

15
0

20
0

25
0

x

y

Function abline() is a function to draw lines, using various parametrisations. For more
information, see help(abline).

Technically, we can apply the least squares estimation to any data set. The algorithm
does not know whether the model assumptions apply, and it does not give us any in-
formation about the quality of the result. It is optimal, but optimality may not mean
much if you are in dire straits. To judge the quality of the estimation, we need additional
work.

The first step in this direction is to get information about the variance of the estimator.
Equation 2.1 tells us that the estimator β̂ is a linear function of the observations Y .
The matrix X is assumed to be known, hence the linear function is considered a known
function. So the stochastic variation comes from the error terms contained in Y , and we
have to reconstruct this.

Equation (2.1) tells us how to calculate the fit at the measurement points:

Ŷ = X(X>X)−X> · Y. (2.3)

The matrix
H := X(X>X)−X> (2.4)

16 REGRESSION

is called the hat matrix .2 It is the main tool for analysing the Gauss-Markov estimator
for a given design matrix X. The design matrix, and hence the hat matrix, depends
only on the experimental conditions, not on the result of the experiment. The fit on the
other side always refers to a specific outcome of the experiment, the random sample of
observed values Y .

Writing Equation 2.3 as
Ŷ = HY (2.5)

highlights that the fit is a weighted average, a linear combination of the observations.
Not all observations need to have the same weight. The coordinate representation

Ŷi = Hii · Yi +
∑
j 6=i

Hij · Yj (2.6)

points to a potential problem. If all contributionsHii are about equal, the fit is a balanced
average and stochastic errors have a chance to balance out. Values of Hii about Rk(X)/n
are the best case. If some contributions Hii are relatively large, the fit at data point i is
dominated by these observations. The extreme would be one large value of Hii, where
the fit Ŷi would be dominated by Yi. This is a sensitivity which by itself is not a problem,
but it can lead to gross errors if there is some problem at data point i. The diagonal
elements Hii are called leverages.

For the simple linear regression Example ?? (page ??)

Hij =
1

n
+

(xi − x)(xj − x)∑n
k=1(xk − x)2

.

So Hii is just the physical leverage you know from the physics of a seesaw with masses
Yi placed at position xi.

The leverage does not depend the experimental outcome - it can be calculated based on
the design matrix X only. High leverage is a feature of the experimental design, not of
the observations. Design points with high leverage can contribute most information and
are used in “optimal” designs, but on the other side they have the potential to be most
misleading if the corresponding observation is a stray one. The leverages, or hat values,
are used as diagnostics for this kind sensitivity by design.

The statistics of the experiment comes in by the stochastic error. The linear model
contains a term ε, representing the measurement error or the experimental fluctuation.
We cannot observe this error directly. If we could, we would subtract it and get exact
information about the model function. But since the error is not observable, we have to
resort to indirect inference.

We already introduced the notion of residuals. To repeat: in general, the value of the
random observation Y is different from the fit Ŷ . The difference

RX(Y) := Y − Ŷ

is called residual . The residual can be seen as an estimator for the non-observable error
term ε.

2 It puts the hat on top of Y : Ŷ = H · Y .

REGRESSION 17

Residuals do not exactly match the error terms. This would only be the case if the
estimation were exact. In our situation, the relation

RX(Y) = Y − Ŷ
= (I −H)Y

= (I −H)(Xβ + ε)

= (I −H)ε

(2.7)

shows that the residuals are linear combinations of the error terms. We have to infer
back from these linear combinations to the error term.

If the variance of the error terms does exist, the variance matrix Σ of the error terms
V ar (ε) = Σ determines the variance of the residuals:

V ar (RX(Y)) = V ar ((I −H)ε)

= (I −H)Σ(I −H)>.
(2.8)

So far we have only presumed that there is no systematic error. This was formalised as
the assumption

E(ε) = 0.

We speak of a simple linear model if we have additionally:

(εi)i=1,...,n are independent

V ar (εi) = σ2 for a σ not depending on i.

For a linear model we try to estimate the parameter vector β. The variance structure
of the vector of error terms introduces nuisance parameters, which complicate the esti-
mation. For a simple linear model this nuisance reduces to just one unknown nuisance
parameter σ. Equations like 2.8 can be simplified because now Σ = σ2I and the param-
eter σ2 can be pulled out from Formula 2.8. We can estimate this parameter from the
residuals, because the residual variance

s2 :=
1

n−Rk(X)

n∑
i=1

(Yi − Ŷi)2 (2.9)

is an unbiased estimator for σ2, where Rk(X) is the rank of the matrix X. We write

σ̂2 := s2. (Taking the root is not a linear operation and does not preserve the expected

value. The residual standard deviation
√
s2 is not an unbiased estimator for σ.) Plugged

into Equation (2.1), the residual variance estimator gives an estimator for the variance/-
covariance matrix of the estimator for β because in the simple model we have

V ar
(
β̂
)

= σ2(X>X)−, (2.10)

which can be estimated by using the residual variance estimator as

̂
V ar

(
β̂
)

= s2(X>X)−. (2.11)

If in addition we can assume that the errors have a normal distribution, s2 and β̂

18 REGRESSION

are independent. We give a summary here, for simplicity for the full rank case where
Rk(X) = p:

Theorem 2.1 For a simple linear model with independent Gaussian errors and full rank
p = Rk(X) of the design matrix, the estimators β̂ and s2 are stochastically independent:

β̂ ∼ Np(β, σ2X>X)
−1

) (2.12)

and

(n− p) s
2

σ2
∼ χ1

n−p. (2.13)

If we standardise β̂ by V ar
(
β̂
)

, each component has a t-distribution, that is, we can

use t-tests for hypotheses such as βj = 0.

REGRESSION 19

The standard output in Example 2.1 shows only minimal information about the estima-
tor. More information about the estimator, residuals and derived statistics are returned
if we ask for a summary.

Example 2.3: Linear Model Summary

Input
summary(lm(y ~ x))

Output
Call:

lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max

-25.5507 -7.2719 0.8401 6.7805 28.1559

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.35321 1.92211 -0.184 0.855

x 2.52234 0.03304 76.332 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01'*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 9.539 on 98 degrees of freedom

Multiple R-squared: 0.9835, Adjusted R-squared: 0.9833

F-statistic: 5827 on 1 and 98 DF, p-value: < 2.2e-16

Exercise 2.2

Analyse the output of lm() shown in Example 2.3. Which of the
terms can you interpret? Write down your interpretations. For
which terms do you need more information?

Generate a commented version of the output.

In Section ?? (page ??) we will present the theoretical background needed to interpret
the remaining terms.

A warning needs to be added here. R reports a t-test value and an error probability
for each of the components of the parameter vector β. However, the estimation of the
components and hence the derived t-tests are not independent. So to be on the safe side,
you have to do a Bonferroni correction , that is, if β has p components and you want
to guarantee an error level of α, make sure that the nominal levels for your decision are
at most α/p. This is a crude bound to keep you on the safe side. In special cases, it

20 REGRESSION

may be possible to have finer tools for simultaneous testing. Examples are in Section ??
(page ??).

2.2.5 Regression Diagnostics

Calling lm() always returns a result if it is appropriate for the data, but it will also
return a linear result if the linear model is not adequate. We need additional diagnostics
to tell us whether the model is reliable and usable.

Exercise 2.3

Let

yy <- 2.5*x +0.01 x^2 + err

What are the results you get if you do a regression using the (in-
correct) regression model yy ∼x? Do you get any hints that this
model is not adequate?

The function lm() not only gives an estimation for the linear model, but also provides a
series of diagnostics that can help to judge whether the model assumptions are accept-
able. A representation using plot() shows some aspects.

REGRESSION 21

Example 2.4: Linear Model Plot

Input
plot(lm(y ~ x))

0 50 100 150 200 250

−
30

−
10

10
30

Fitted values

R
es

id
ua

ls

●

●

●

●

●

●

●

●

●
●●

●
●

●●

●
●
●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●
●

●

●●

●

●
●
●

●
●
●

●
●

●
●

●●

●

●

●

●
●

Residuals vs Fitted

38

42
96

●

●

●

●

●

●

●

●

●
●●

●
●

●●

●
●

●

●

●●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●
●

●●

●

●

●

●
●

−2 −1 0 1 2

−
2

0
1

2
3

Theoretical Quantiles
S

ta
nd

ar
di

ze
d

re
si

du
al

s

Normal Q−Q

38

42
96

0 50 100 150 200 250

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●
●
●

●
●●
●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

Scale−Location
38

42
96

0.00 0.01 0.02 0.03 0.04

−
3

−
1

1
2

3

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●

●

●

●

●

●

●
●●

●
●

●●

●
●

●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●
●

●

●●

●

●
●
●

●
●
●

●
●

●
●

●●

●

●

●

●
●

Cook's distance

Residuals vs Leverage

96
2

38

The top left plot shows the residuals against the fit. It gives a first survey.

The distribution of the fitted values depends on the design. Unless the design is homo-
geneous, you cannot expect the residual plot to be homogeneous.

The residuals should look approximately like a scatterplot of independent variables. The
distribution of the residuals should not vary with the fit. If systematic structures show
up in this plot, it is a warning that the model or the model assumptions may not be
satisfied.

The previous discussion allows us to be more precise: the residuals should be linear
combinations as in (2.7) of independent identically distributed variables. If the model
assumptions are satisfied, the variance is given by (2.8).

In a one-dimensional situation, a plot of the residuals against the regressor would be
sufficient. For p regressors, the graphical representation becomes difficult. The plot of
the residuals against the fit, however, generalises to higher dimensions of the regressors.

Some caution is necessary. Even for independent identically distributed errors this plot
is rarely a homogeneous plot. The variance of the residuals is in general not constant as
seen from (2.8), and the visual spread will depend on the density of the fit values. But

22 REGRESSION

it is good custom to start with a plot which is as near to the data as possible and leave
adjustments for later steps.

If we start with distribution assumptions about the error terms, we can derive distri-
bution properties of the estimator and of the residuals. The most powerful statements
are possible if the error terms are independent identically distributed with a common
normal distribution. In that case, the plot on the upper right should look approximately
like a “normal probability plot” of normal random variates, where again “approximately”
means: up to transformation with the matrix I −H. Using the empirical version of 2.8

V ar (RX(Y)) = V ar ((I −H)ε)

= (I −H)Σ̂(I −H)>
(2.14)

and inverting it would give standardised residuals. By convention, an approximation
is taken, giving

R
(std)
i :=

Ri√
σ̂2(1−Hii)

. (2.15)

This gives a unit variance and moves the residuals to a common scale. The dependence
however is not removed. Standardised residuals in general are still dependent, even for
independent errors.

After standardisation, residuals should be on a common scale. In particular their mag-
nitude should not vary with the fit, to be inspected with the bottom-left plot.

The bottom-right plot is a scatterplot of the standardised residuals against leverage.
Large standardised residuals are suspicious because they indicate a lack of fit. But small
residuals may indicate a problem as well, in particular if they combine with a large lever-
age value. This hints at observations that may be outliers, possibly acting as leverage
points with critical influence on the estimation. There is a rich literature on diagnostic
plots which can be found using the keywords “residual analysis” or “regression diagnos-
tics”. As a concise textbook, see for example [22].

The plots included by default are a first step, and you will want to modify them or
add your own selection. For example, if you are concerned about possible serial effects,
you will add a plot of the (standardised) residuals against the case index, or add some
indicators which are sensitive to loss of independence.

For diagnostic purposes, we go even further. We already have used a standardisation
of the residuals in Equation (2.15) on page 22. If all assumptions are satisfied, this
standardisation is sufficient. Standardisation transforms the residuals to a standard scale
so that we have a notion of “large” and “small”. Large standardised residuals indicate a
poor fit and may indicate that a data point needs closer inspection.

If we have possible outliers that may work as leverage points and influence the regression
critically, this influence on the estimation can lead to an over-fitting resulting in small
residuals, effectively hiding the critical points. A large leverage value indicates a potential
leverage influence, and large leverage values combined with small standardised residuals
are particularly suspicious as this may hint to an effective leverage influence.

REGRESSION 23

Least squares estimation, as used with linear models, is particular sensitive to leverage
effects. From a decision theoretic point of view, this is using a square as a loss function.
The loss is potentially unbounded, and a single far out point may destroy the estima-
tion. Moreover, for square loss the slope is increasing. So far out points gain increasing
influence.

As a first precaution, Equation (2.15) on page 22 is modified by leave-one-out dele-
tion. At any data point, the regression is calculated and the variance is estimated on the
data set, excluding that data point. This gives a variant of the residuals called (exter-
nally) studentised residuals. Standardised residuals are provided by rstandard() ;
externally studentised residuals are available as rstudent() .

Earlier versions of R used library MASS [21] which provides standardised residuals by
stdres() ; and externally studentised residuals as studres() .

Coming back to the influence point of view, one can go beyond leverage diagnostics. The
leverage gives the potential influence of a data point on the estimation. Taking partial
derivatives of β̂ or of Ŷ give an indication of the factual influence. The linear transfor-
mation which links the estimator β̂ and the fit Ŷ may lead to different weights. Usually
only leave-one-out versions of these diagnostics are considered, provided as dfbetas()

and dffits() . Both are special cases of a general function influence.measures() .

Leave-one-out diagnostics are but a first step in regression diagnostics. This approach is
extensively discussed in [4].

Effects of several data points may interact. For example, a high and a low outlier may
combine and be masked in leave-one-out diagnostics while still controlling the regres-
sion. Techniques for the analysis of multi-point effects are available. The computing
effort however may soon become overwhelming. If there is but one outlier, there are
just n candidates in n data points. If pairs are considered, there are

(
n
2

)
possibilities,

and complexity increases for more. With todays computing facilities, solutions are still
feasible. For an example see the robust diagnostic regression analysis implemented in
library forward [2][3].

Exercise 2.4

Use plot() to inspect the results of Exercise 2.3. Does it give
you indications that the linear model is not appropriate? Which
indications?

plot() provides additional diagnostic plots for linear models. These must be requested
explicitly using the parameter which.

24 REGRESSION

help(lm)

lm Fitting Linear Models

Description

lm is used to fit linear models. It can be used to carry out regression, single stratum
analysis of variance and analysis of covariance (although aov may provide a more
convenient interface for these).

Usage

lm(formula, data, subset, weights, na.action,

method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,

singular.ok = TRUE, contrasts = NULL, offset, ...)

Arguments

formula an object of class "formula" (or one that can be coerced to that
class): a symbolic description of the model to be fitted. The details
of model specification are given under ‘Details’.

data an optional data frame, list or environment (or object coercible
by as.data.frame to a data frame) containing the variables in
the model. If not found in data, the variables are taken from
environment(formula), typically the environment from which lm

is called.

subset an optional vector specifying a subset of observations to be used
in the fitting process.

weights an optional vector of weights to be used in the fitting process.
Should be NULL or a numeric vector. If non-NULL, weighted least
squares is used with weights weights (that is, minimizing sum(w*e^2));
otherwise ordinary least squares is used. See also ‘Details’,

na.action a function which indicates what should happen when the data con-
tain NAs. The default is set by the na.action setting of options,
and is na.fail if that is unset. The ‘factory-fresh’ default is na.omit.
Another possible value is NULL, no action. Value na.exclude can
be useful.

method the method to be used; for fitting, currently only method = "qr"

is supported; method = "model.frame" returns the model frame
(the same as with model = TRUE, see below).

REGRESSION 25

model, x, y, qr

logicals. If TRUE the corresponding components of the fit (the
model frame, the model matrix, the response, the QR decomposi-
tion) are returned.

singular.ok logical. If FALSE (the default in S but not in R) a singular fit is an
error.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

offset this can be used to specify an a priori known component to be
included in the linear predictor during fitting. This should be NULL
or a numeric vector of length equal to the number of cases. One
or more offset terms can be included in the formula instead or
as well, and if more than one are specified their sum is used. See
model.offset.

... additional arguments to be passed to the low level regression fitting
functions (see below).

Details

Models for lm are specified symbolically. A typical model has the form response

~ terms where response is the (numeric) response vector and terms is a series of
terms which specifies a linear predictor for response. A terms specification of the
form first + second indicates all the terms in first together with all the terms in
second with duplicates removed. A specification of the form first:second indicates
the set of terms obtained by taking the interactions of all terms in first with all
terms in second. The specification first*second indicates the cross of first and
second. This is the same as first + second + first:second.
If the formula includes an offset, this is evaluated and subtracted from the re-
sponse.
If response is a matrix a linear model is fitted separately by least-squares to each
column of the matrix.
See model.matrix for some further details. The terms in the formula will be re-
ordered so that main effects come first, followed by the interactions, all second-order,
all third-order and so on: to avoid this pass a terms object as the formula (see aov

and demo(glm.vr) for an example).
A formula has an implied intercept term. To remove this use either y ~ x - 1 or y
~ 0 + x. See formula for more details of allowed formulae.
Non-NULL weights can be used to indicate that different observations have different
variances (with the values in weights being inversely proportional to the variances);
or equivalently, when the elements of weights are positive integers wi, that each
response yi is the mean of wi unit-weight observations (including the case that there
are wi observations equal to yi and the data have been summarized).
lm calls the lower level functions lm.fit, etc, see below, for the actual numerical
computations. For programming only, you may consider doing likewise.
All of weights, subset and offset are evaluated in the same way as variables in
formula, that is first in data and then in the environment of formula.

26 REGRESSION

Value

lm returns an object of class "lm" or for multiple responses of class c("mlm",

"lm").
The functions summary and anova are used to obtain and print a summary and anal-
ysis of variance table of the results. The generic accessor functions coefficients,
effects, fitted.values and residuals extract various useful features of the value
returned by lm.
An object of class "lm" is a list containing at least the following components:

coefficients a named vector of coefficients

residuals the residuals, that is response minus fitted values.

fitted.values the fitted mean values.

rank the numeric rank of the fitted linear model.

weights (only for weighted fits) the specified weights.

df.residual the residual degrees of freedom.

call the matched call.

terms the terms object used.

contrasts (only where relevant) the contrasts used.

xlevels (only where relevant) a record of the levels of the factors used in
fitting.

offset the offset used (missing if none were used).

y if requested, the response used.

x if requested, the model matrix used.

model if requested (the default), the model frame used.

na.action (where relevant) information returned by model.frame on the spe-
cial handling of NAs.

In addition, non-null fits will have components assign, effects and (unless not
requested) qr relating to the linear fit, for use by extractor functions such as summary
and effects.

Using time series

Considerable care is needed when using lm with time series.
Unless na.action = NULL, the time series attributes are stripped from the variables
before the regression is done. (This is necessary as omitting NAs would invalidate the
time series attributes, and if NAs are omitted in the middle of the series the result
would no longer be a regular time series.)
Even if the time series attributes are retained, they are not used to line up series, so
that the time shift of a lagged or differenced regressor would be ignored. It is good
practice to prepare a data argument by ts.intersect(..., dframe = TRUE), then
apply a suitable na.action to that data frame and call lm with na.action = NULL

so that residuals and fitted values are time series.

REGRESSION 27

Note

Offsets specified by offset will not be included in predictions by predict.lm,
whereas those specified by an offset term in the formula will be.

Author(s)

The design was inspired by the S function of the same name described in Chambers
(1992). The implementation of model formula by Ross Ihaka was based on Wilkinson
& Rogers (1973).

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J.
M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.
Wilkinson, G. N. and Rogers, C. E. (1973) Symbolic descriptions of factorial models
for analysis of variance. Applied Statistics, 22, 392–9.

See Also

summary.lm for summaries and anova.lm for the ANOVA table; aov for a different
interface.
The generic functions coef, effects, residuals, fitted, vcov.
predict.lm (via predict) for prediction, including confidence and prediction inter-
vals; confint for confidence intervals of parameters.
lm.influence for regression diagnostics, and glm for generalized linear models.
The underlying low level functions, lm.fit for plain, and lm.wfit for
weighted regression fitting.
More lm() examples are available e.g., in anscombe, attitude, freeny,
LifeCycleSavings, longley, stackloss, swiss.
biglm in package biglm for an alternative way to fit linear models to large
datasets (especially those with many cases).

Examples

require(graphics)

Annette Dobson (1990) "An Introduction to Generalized Linear Models".

Page 9: Plant Weight Data.

ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)

trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)

group <- gl(2,10,20, labels=c("Ctl","Trt"))

weight <- c(ctl, trt)

lm.D9 <- lm(weight ~ group)

lm.D90 <- lm(weight ~ group - 1) # omitting intercept

anova(lm.D9)

summary(lm.D90)

28 REGRESSION

opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))

plot(lm.D9, las = 1) # Residuals, Fitted, ...

par(opar)

less simple examples in "See Also" above

To be added to the help information: in the formula notation, with two terms or lists
of terms first and second, first-second includes the variables indicated by the first
term, but excludes those indicated by the second. For more information on the formula
notation, see help(formula). A summary is given in Appendix A.18 (page Suppl.A-72).

The hat matrix is a particularity of linear models. Fit and residuals, however, are general
concepts and can be applied for all kind of estimations. Clients are often satisfied seeing
a fit (or the estimation). For serious clients, and for statisticians, the residuals often
contain more valuable information. They indicate what is not yet covered by the model
or the estimation.

2.2.6 Gauss-Markov Estimator

Let us take a closer look at the Gauss-Markov estimator. Knowledge from linear algebra,
considerable thought or other sources tell us:

Remark 2.2

(1) The design matrix X defines a mapping Rp → Rn with β 7→ Xβ.
Let MX , MX ⊂ Rn be the image space of this mapping. MX is the vector space
generated by the column vectors from X.

(2) If the model assumptions are satisfied, E(Y) ∈MX .

(3) Ŷ = πMX
(Y), where πMX

: Rn →MX is the (Euclidean) orthogonal projection.

(4) In the full rank case, β̂ = argminβ |Y − Ŷβ |2 where Ŷβ = Xβ.

The characterisation (3) of the Gauss-Markov estimator as an orthogonal projection
often helps understanding. The fit is the orthogonal projection of the observation vector
on the space of expected values of the model (which hence minimises the quadratic
distance). This is the space spanned by the columns of the design matrix. The vector of
residuals is the orthogonal complement.

In statistics, the estimator is analysed systematically, and the characterisation given
above is just one starting point. Some properties of the estimator can be easily derived
using knowledge from probability theory, such as the following lemma:

Theorem 2.3 Let Z be a random variable with values in Rn, with N(0, σ2In×n) distri-
bution, and let Rn = L0 ⊕ . . .⊕Lr be an orthogonal decomposition. Let πi = πLi be the
orthogonal projection onto Li, i = 0, . . . , r. Then the following holds:

REGRESSION 29

(i) π0(Z), . . . , πr(Z) are independent random variables with normal distributions.

(ii) |πi(Z)|2
σ2 ∼ χ2(dimLi) for i = 0, . . . , r.

Proof. → probability theory. See, for example, [11], 2.5 Theorem 3.

Using ε = Y −Xβ allows us to derive the theoretical distributions for the estimator β̂
and the residuals Y − Ŷ .

In particular, for simple linear models, the residual variance can be used to calculate

the variance (resp. standard deviation) for each component β̂k. The corresponding t

statistics and the p-value for the test of the hypothesis β̂k = 0 are given in the output
of summary().

Exercise 2.5

What is the distribution of |RX(Y)|2 = |Y − Ŷ |2, if ε has a
N(0, σ2I) distribution?

At first glance |RX(Y)|2 = |Y − Ŷ |2 seems an appropriate gauge to judge the quality
of a model: small values indicate a good fit, large values indicate a poor fit. However,
this has to be taken with caution. On the one hand, this value depends on linear scale
factors. On the other hand, the dimension of the spaces involved has to be taken into
account.

What happens if additional regressors are taken into the model? We have already seen
that “linear” includes the possibility of modelling non-linear relations, for example, by
taking transformed variables into the design matrix. The characterisation (3) in Remark
2.2 tells us that effectively only the vector space spanned by the design matrix is rele-
vant. Here we can see limits for the Gauss-Markov estimator in linear models: if many
transformed variables are taken into the model, or generally if the image space deter-
mined by the design matrix becomes too large, an over-fitting will result. In the extreme
case we may get Ŷ = Y . So all residuals are zero, but the estimation is not useful.

We use |RX(Y)|2/dim(LX), where LX is the orthogonal complement of MX in Rn (so
dim(LX) = n− dim(MX)) to compensate for the number of dimensions.

Exercise 2.6

Modify the output of plot.lm() for the linear model so that in-
stead of the Tukey-Anscombe plot the studentised residuals are
plotted against the fit.

(cont.)→

30 REGRESSION

Exercise 2.6 (cont.)

∗ Enhance the QQ-Plot by Monte Carlo bands for independent nor-
mal errors.
Hint: You cannot generate the bands directly from a normal dis-
tribution — you need the distribution of the residuals, not the
distribution of the errors.

Exercise 2.7

Write a procedure that calculates the Gauss-Markov estimator for
the simple linear regression

yi = a+ bxi + εi with xi ∈ R, a, b ∈ R
and shows four plots:

• response against regressor, with estimated straight line

• studentised residuals against fit

• distribution function of the studentised residuals in a QQ plot
with confidence bands

• histogram of the studentised residuals

2.5 Beyond Linear Regression

2.5.1 Generalised Linear Models

We want to proceed to practical work. But at this point we should consider how to
overcome the limiting assumptions of linear models. Linear models are among the best-
investigated statistical models. Theory and algorithms are far advanced. So it is tempting
to try to extend this class of models while still allowing ourselves to use the theoretical
and algorithmic know-how.

We have formulated the linear model as

Y = m(X) + ε

Y with values inRn

X ∈ Rn×p

E(ε) = 0

with m(X) = Xβ, β ∈ Rp.

An important extension is to remove the linearity assumption. As an intermediate step,
we do not suppose any longer that m is linear, but only that it can be factored using a

R COMPLEMENTS 31

linear function. This results in a generalised linear model

Y = m(X) + ε

Y with values inRn

X ∈ Rn×p

E(ε) = 0

m(X) = m(η) with η = Xβ, β ∈ Rp.

The next generalisation at hand is to allow for a transformation for Y . Many more
generalisations have been discussed. A small number of them have proven tractable. Most
important among these is a group of models called generalised linear models (GLM).

An introduction to generalised linear models is [7], and an extensive classical survey is
[13].

Generalised linear models have extensive support in R. For most of the functions in R
for linear models, there is a corresponding function for generalised linear models. For
more information see help(glm).

2.6 R Complements

2.6.4 Classes and Polymorphic Functions

Polymorphism and classes are concepts from object oriented programming. Object ori-
ented programming is a programming style that uses objects as basic elements. Objects
conceptually consist of data slots and methods. Encapsulating data and methods as
an object is one aspect.

Object oriented programming uses abstract data types, called classes which define
the data structure and the methods for an object. Classes are arranged in a hierarchy:
derived classes inherit the structure of their predecessor, but can add slots and methods.
This inheritance is used to generate specific variants. In object oriented programming,
variables are instances of a class. The general structure is defined by the class, but the
contents of the data slot may be specific to the instance.

Since functions are first class members of R and functions can be stored for example in
components of a list, object oriented programming is a style that can be used with R
as presented here. Beyond this, R has support for object oriented programming on the
language level. setClass() allows to define the structure of a class. new() is available
to create an instance of a class. For details, see chapter 5 of [20].

CHAPTER 3

Comparisons

Exercise 3.1 Click Timing

Define a function click(runs) that repeats click1() a cho-
sen number runs plus one times and returns the result as a
data.frame. The additional first timing should be considered as
a “warming up” and is not included in the following evaluations.

Select a number runs. Give reasons for your choice of runs. Execute
click(runs) and store the result in a file using write.table().

Display the distribution of the component tclick with the me-
thods from Chapter 1 (distribution function, histogram, box-and-
whisker plot).

3.1 Shift/Scale Families, and Stochastic Order

Exercise 3.1 Click Comparison

Perform Exercise 3.1 using the right hand and then again using the
left hand. Compare the empirical distributions of the timing data
returned by tclick() for the right and left hand.

The recorded data also contain information about the positions.
Define a distance measure dist for the deviation. Give reasons for
your definition. Perform a right/left comparison for dist.

For later analysis, store the results for the right hand and for the
left hand in files. named "clickright-xxxx" and " "clickright-

xxxx", where xxxx is an identification of you choice. For example,
use your initials, the date and some sequential number, such as in
"clickright-cs20050416-1".

33

34 COMPARISONS

3.3 Tests for Shift Alternatives

. . .

To apply the Wilcoxon test, on the one hand the test statistic has to be calculated.
On the other hand, to determine the critical values, the distribution function has to
be evaluated. If all observations are distinct, this function depends only on n1 and n2,
and fairly simple algorithms are available. These are provided in the R base and used by
wilcox.test() . However, if there are ties in the data, that is, there are values occurring
more than once, the distribution depends on the special pattern of these ties and the
calculation is laborious. wilcox.test() returns to approximations in this case. For an
exact evaluation (in contrast to approximative), the necessary algorithms are available
as well. To use them, you need library(coin). The exact variant of the Wilcoxon
tests, for example, is implemented as one option in wilcox_test() . Besides providing
the exact Wilcoxon test, this function allows to calculate approximative Monte Carlo
solutions and solutions based on asymptotic approximations.

For the exact test, you have to combine the data, for example code as in

clicktimes <- stack(list(left=left$tclick, right= right$tclick))

names(clicktimes) <- c("time", "side")

wilcox_test(time~side, data=clicktimes, distribution="exact")

Exercise 3.1

Use the Wilcoxon test to compare the results of the right/left click
experiment.

Use both variants, the approximative test wilcox.test() and the
exact Wilcoxon test wilcox_test() .

CHAPTER 4

Dimensions 1, 2, 3, . . . , ∞

4.1 R Complements

In this chapter we begin with complements on R in order to concentrate on statistical
questions for the remainder without disrupting the discussion with programming details.
We take a look at the graphical possibilities that are at our disposal.

The basic graphics model of R is oriented to possibilities historically provided by a
plotter as an output device. The graphics follow the possibilities available when drawing
with a pen. Besides the one- and two-dimensional possibilities which we have seen so
far, there are possibilities to display a real valued function that is defined over a grid.
Basically, three R functions are available for this.

3d Basic
Graphics

image() gives the values of a variable z in grey levels or colour coding.

contour() gives the contours of a variable z.

filled.contour() gives the contours of a variable z. with the areas between the
contours filled in solid colour

persp() gives a perspective plot of a variable z.

The basic graphic system does not provide a generalisation of plot() for three dimen-
sions. The classic solution is to use persp() to set up a 3d coordinate system. The
translation matrix for this coordinate system to 2d is returned as a hidden result an can
be used to project 3d points to 2d in this perspective using trans3d() . points() is
then used to add the points. See the examples section in help(persp).

The basic graphics system in R is easy to use, and it is available in all R implementations.
But it is limited in possibilities. A newer graphics system, the grid and lattice graphics
[19], conceptually works with objects and a viewport model. The graphic objects can
be combined and post-processed. The display takes part in a separate step. Simple 2d
graphs can be post-processed. For a 3d display, distance, the point of view and the
focal length can be chosen as we would do when using a camera. The object-oriented

35

36 DIMENSIONS 1, 2, 3, . . . , ∞

graphics system consists of a library grid with the elementary operations required, and
a higher level library lattice that gives new implementation of the displays known
from the basic graphics and adds additional displays. While the basic graphic system
has the plotter as underlying technical device, you should think of a postscript printer
as a technical model for grid/lattice.

image() and contour() can also be used to give an overlay on other plots.

Example 4.1: 3d Surface Displays Using Base Graphics

Input
x <- 10*(1:nrow(volcano)) # 10 meter spacing (S to N)

y <- 10*(1:ncol(volcano)) # 10 meter spacing (E to W)

image(x, y, volcano, col = terrain.colors(100),

axes = FALSE, xlab = "Meters North", ylab = "Meters West")

axis(1, at = seq(100, 800, by = 100))

axis(2, at = seq(100, 600, by = 100))

box()

title(main = "Maunga Whau Volcano", font.main = 4)

contour(x, y, volcano, levels = seq(90, 200, by = 5),

col = "peru", main = "Maunga Whau Volcano", font.main = 4,

xlab = "Meters North", ylab = "Meters West")

z <- 2 * volcano # Exaggerate the relief

Don't draw the grid lines : border = NA

persp(x, y, z, theta = 135, phi = 30, col = "green3", scale = FALSE,

ltheta = -120, shade = 0.75, border = NA, box = FALSE)

▼�✁�✂✄ ☎✆✂✁t

✝
✞
✟✞
✠✡
☛
✞
✡
✟

✶☞☞ ✷☞☞ ✸☞☞ ✹☞☞ ✺☞☞ ✻☞☞ ✼☞☞ ✽☞☞

✌
✍
✍

✎
✍
✍

✏
✍
✍

✑
✍
✍

✒
✍
✍

✓
✍
✍

▼�✁✂✄� ☎✆�✁ ✝♦✞✟�✂♦

✥✠

✡☛☛

☞✌
✌

✍✎✎

✏✑✒

✓✔✕

✖✖✗

✘✘✙

✚✚✛

✜✜✢

✣✣✤

✦✦✧
★★✩

✪✫✬
✭✮✯ ✰✱✲

✰✱✳ ✘✴✙
✵✶✷

✸✹✺

✻✼✼

✽✾
✾

✿❀❁

❂❃❄

❅❆❇

❈❉❊

❋●❍

■❏
❑

▲◆❖

P◗❘

❙❚
❯

❱❲❳

❨❩❬

❭ ❪❭❭ ❫❭❭ ❴❭❭ ❵❭❭

❛

❜
❛
❛

❝
❛
❛

❞
❛
❛

❡
❛
❛

❢
❛
❛

❣
❛
❛

image() contour() persp()
See Colour Figure ??.

3d Lattice
Graphics

cloud() generic lattice function to draw 3d scatterplots.

(cont.)→

R COMPLEMENTS 37

3d Lattice
Graphics

(cont.)

wireframe() generic lattice function to draw 3d surfaces.

In the basic graphics system, the functions usually provide a graphical output, and the
internal information must be accessed explicitly. In the lattice system, the functions
usually return lattice objects. Graphical output must be requested explicitly. For the
output of lattice objects the function print() is used.

As far as parametrising the graphics system is concerned, grid/lattice encourages a
different programming style than base graphics. In base graphics, you would use par()

to define the graphics set up, or pass individual parameters via high level function to
par() . With grid/lattice, the preferred way is to collect the parameters as a list and
pass this list as argument par.parameters.

Example 4.2: 3d Surface Display Using Lattice Graphics

Input
library(lattice)

print(wireframe(volcano, shade = TRUE,

aspect = c(61/87, 0.4), ## volcano ## 87 x 61 matrix

par.settings = list(axis.line = list(col = "transparent")),

light.source = c(10,0,10)))

row
column

volcano

See Colour Figure ??.

38 DIMENSIONS 1, 2, 3, . . . , ∞

The basic graphics system and lattice graphics are separate graphics systems. Unfortu-
nately, they use different notations for comparable functions, and comparable displays
have different representations. A small translation aid is given in Table 4.5. Some con-
venience functions to combine both graphics systems are provided in library gridBase.
An extensive introduction to both graphics systems is [14].

Basic Graphics Lattice

barplot() bar chart barchart()

boxplot() box-and-whisker plot bwplot()

three-dimensional scatterplot cloud()

contour contour plot contourplot()

coplot conditional scatterplots xyplot()

plot(density()) density estimator densityplot()

dotchart() dot plot dotplot()

hist() histogram histogram()

image() colour map plots splom()

parallel coordinate plots parallel()

pairs() scatterplot matrices wireframe()

persp() three-dimensional surface wireframe()

plot() scatterplot xyplot()

qqnorm() theoretical QQ plot qqmath()

qqplot() empirical QQ plot qq()

stripchart() one-dimensional scatterplot stripplot()

Table 4.5 Basic graphics and lattice graphics

If you know that you are displaying 3d scenes, you might consider library(rgl) [1]
as an alternative. If implemented on your system, rgl provides real-time 3d rendering
with interactive facilities. This code snippet will allow you to turn the vulcano upside
down:

library("rgl")

example(surface3d)

In a wide range of scientific visualisations, OpenGL is used as a common standard.
OpenGL functions are accessible in R using the library rgl . There are, however, certain
differences between common requirements for graphics, and the specific requirements
of statistical graphics. As far as the representation of functions is concerned, statistical
graphics is comparable with the requirements usual in analysis. The small difference is
that functions in statistics are often piece-wise constant or only piece-wise continuous,

R COMPLEMENTS 39

while, for example, in analysis continuous or even differentiable functions are the rule
rather than the exception. When it comes to displaying data, the situation changes
drastically. Usually, statistical data are discrete. Smoothness properties that simplify
display of analytical data are not available for statistical data. So visualisations adapted
to the needs of statistics are required.

Library misc3d [6] provides a more convenient plotting procedure like contour3d() and
image3d() which can be used either with the basic graphic system, or grid/lattice,
or rgl.

R as a Programming Language and
Environment

R is an interpreted expression language. Expressions are composed of objects and oper-
ators.

A.1 Help and Information

Some R functions such as library() or data() serve a dual purpose. With minimal
arguments, they provide help and information. With specific arguments, they give access
to certain components.

R Help

help() information about an object/a function.

Example: help(help)

help.start() starts browser access to R’s online documentation. The reference
section includes a search engine to search for keywords, function
and data names and text in help page titles.

args() shows arguments of a function.

example() executes examples, if available.

Example: example(plot)

help.search() searches for information about an object/a function.

RSiteSearch() searches for keywords or phrases in the R-help archives or docu-
mentation.

apropos() locates by keyword.

demo() executes demos for a topic area.

Example: demo(graphics)

demo() lists all topic areas that provide a demo.

(cont.)→

Suppl.A-41

Suppl.A-42 R AS A PROGRAMMING LANGUAGE AND ENVIRONMENT

R Help

(cont.)

library() gives information about libraries.

Example: library() gives a list of all libraries.

library(help=〈package〉) gives information about a package.

Example: library(help="stats") gives information about
the basic statistics package.

data() gives information about data sets.

Example: data() lists available data sets.

vignette() lists or views vignette information about a topic.

vignette(all = TRUE) lists vignettes from all installed pack-
ages.

Example: vignette("grid") shows a vignette for the grid
graphics.

See also Appendix A.6 “Object Inspection” (page Suppl.A-49) and Appendix A.7 “Sys-
tem Inspection” (page Suppl.A-50).

NAMES AND SEARCH PATHS Suppl.A-43

A.2 Names and Search Paths

Objects are identified by names. By the name objects are searched in a search path, a
chain of search environments. The search path in effect can be inspected with search() .

R Search Paths

search() lists the search areas in effect, beginning with .GlobalEnv down
to the base package package:base.

Example: search()

searchpaths() lists the access paths for the search areas in effect.

Example: searchpaths()

objects() lists the objects in a search path.

Examples: objects()

objects("package:base")

ls() lists the objects in a search path.

Examples: ls()

ls("package:base")

ls.str() lists the objects and their structure in a search path.

Examples: ls.str()

ls.str("package:base")

find() locates by keyword. Also finds overlaid entries.

Syntax: find(what, mode = "any", numeric = FALSE,

simple.words = TRUE)

apropos() locates by keyword. Also finds overlaid entries.

Syntax: apropos(what, where = FALSE, ignore.case =

TRUE, mode = "any")

Functions can be nested. This may occur at definition time as well as at execution time.
This requires an extension of the search paths. The dynamic identification of objects
uses environments to resolve local or global variables in functions.

R Search Paths
(cont.)

environment() current environments.

Example:
environment()

(cont.)→

Suppl.A-44 R AS A PROGRAMMING LANGUAGE AND ENVIRONMENT

R Search Paths
(cont.)

(cont.)

sys.parent() preceding environments.

Example: sys.parent(1)

ADMINISTRATION AND CUSTOMISATION Suppl.A-45

A.3 Administration and Customisation

objects()

ls()

lists the objects in the current search path.

rm() removes indicated objects.

Syntax: rm(〈object list〉)

R offers a series of possibilities to configure the system so that certain commands are
executed upon start or termination. When starting, the files .Rprofile and .RData are
read and executed if available. Details can be system specific. The appropriate informa-
tion is given by:

help(Startup)

Various parts of the system keep global information and can be configured by setting
options and parameters.

Some System
Components
with Global
State

basic system see help(options).

random numbers see Appendix A.21 (page Suppl.A-81).

basic graphics see help(par).

lattice graphics see help(lattice.options).

For information on how to configure memory available for data storage, see:

help(Memory)

See also Appendix A.7 “System Inspection” (page Suppl.A-50).

Suppl.A-46 R AS A PROGRAMMING LANGUAGE AND ENVIRONMENT

A.4 Basic Data Types

Basic
R Data Types

numeric real or integer. In R: real numbers are always in double preci-
sion. Single precision is supported for external call to other lan-
guages with .C or .FORTRAN. Functions mode() and typeof()

can show the storage modus (single, double . . .), depending on
the implementations.

Examples: 1.0

2

3.14E0

complex complex, in Cartesian coordinates.

Example: 1.0+0i

logical TRUE, FALSE.
In R, T and F are predefined variables provided as an alternative.
In S-Plus, T and F are basic objects.

character character strings. Delimiter are alternatively " or '.

Example: "T", 'klm '

list general list structure.
List elements can be of different types.

Example: list(1:10, "Hello")

function R function.

Example: sin

NULL special case: empty object.

Example: NULL

is.〈type〉() tests for a type, as.〈type〉() converts to a type.

In addition to TRUE and FALSE there are three special values for exceptional situations:

Special Con-
stants

TRUE alternative: T. Type: logical.

FALSE alternative: F. Type: logical.

(cont.)→

BASIC DATA TYPES Suppl.A-47

Special Con-
stants

(cont.)

NA “not available”. Type: logical.
NA is different from TRUE and FALSE.

NaN “not a valid numeric value”. Implementation dependent.
Should follow the IEEE Standard 754. Type: numeric.

Example: 0/0

Inf infinite. Implementation dependent.
Should follow the IEEE Standard 754. Type: numeric.

Example: 1/0

Test Functions

is.na() returns TRUE if the argument has the value NA or NaN.

na.omit() returns an object with the cases containing NA removed.

na.fail() returns its argument if no the case contains NA ; signals an error
message otherwise.

is.nan() returns TRUE if the argument has the value NaN.

is.inf() returns TRUE if the argument has the value Inf or -Inf.

Suppl.A-48 R AS A PROGRAMMING LANGUAGE AND ENVIRONMENT

A.5 Output for Objects

Revised from Appendix A.5 (page Suppl.A-48): str added.

The object attributes and content can be queried or displayed using output routines. The
output routines generally are polymorphic, that is they come with variants adapted
to the given object type. To list all available methods for an generic function, or all
methods for a class, use methods() , for example methods(print).

R Inspection

print() standard output.

cat() outputs the objects, concatenating the representations. cat()

is useful for producing output in user-defined functions, with
minimal formatting.

format() formats an R object for pretty printing.

structure() output, optional with attributes.

str() compact output, optional with attributes.

summary() standard output as summary, in particular for model fits.

plot() standard graphic output.

For converting tables to a HTML or LaTeX format, library(xtable) [5] is available.

Output of objects to files is discussed in Appendix A.15 “Input and Output to Data
Streams” (page Suppl.A-66).

OBJECT INSPECTION Suppl.A-49

A.6 Object Inspection

Objects have two implicit attributes that can be queried with mode() and length() .
The function typeof() gives the (internal) storage modus of an object.

A class attribute gives the class of an object.

The following table summarises the most important information possibilities about ob-
jects.

Object Inspec-
tion

str() shows the internal structure of an object in compact form.

Syntax: str(〈object〉)

structure() shows the internal structure of an object. Attributes for the dis-
play can be passed as parameters.

Example: structure(1:6, dim = 2:3)

Syntax: structure(〈object〉, . . .)

class() object class. For object classes defined in newer R versions, the
class is stored as an attribute. For vintage object classes, the
class is determined implicitly by type and other attributes.

mode() mode (type) of an object.

storage.mode() storage mode of an object.

typeof() mode of an object. May be different from the storage mode.
Depending on the implementation a numerical variable, for ex-
ample, can be stored in double precision (the default) or in single
precision.

length() length = number of elements.

attributes() reads/sets attributes of an object, such as names, dimensions,
classes.

names() names attribute for elements of an object, for example, a vector.

Syntax: names(〈obj〉) gives the names attribute of 〈obj〉.
names(〈obj〉)<-〈charvec〉 sets the names attribute.

Example: x<-values
names(x)<- 〈charvec〉

Suppl.A-50 R AS A PROGRAMMING LANGUAGE AND ENVIRONMENT

A.7 System Inspection

The following table summarises the most important information possibilities about the
general system environment. When used with an argument, these functions generally
serve specific purposes, such as setting parameters and options. When used with an
empty argument list, they provide inspection.

System
Inspection

search() current search path.

ls() objects in current or selected search path.

methods() generic methods:

Syntax: methods(〈fun〉)
shows specialised functions for 〈fun〉,
methods(class = 〈c〉) the class-specific functions for
class 〈c〉.

Examples: methods(plot)

methods(class = lm)

data() accessible data.

library() accessible packages.

help() general help system.

options() global options.

par() parameter settings for the graphics system.

capabilities() reports availability of optional features.

The options of the lattice systems can be controlled with trellis.par.set() resp.
lattice.options() .

R is anchored in the host operating system. Some variables such as access paths, encod-
ing, etc. are imported from there.

System
Environment

getwd() gets current working directory.

setwd() sets current working directory.

dir() lists files in the current working directory.

system() calls system functions.

COMPLEX DATA TYPES Suppl.A-51

A.8 Complex Data Types

The interpretation of basic types or derived types can be specified by one or more class
attributes. Polymorphic functions such as print or plot evaluate this attribute and
call a variant for this class if available (see Section ?? (page ??)).

For the storage of dates and times, special classes are provided. For more information
on these data types see

help(DateTimeClasses)

and Appendix A.15 (page Suppl.A-66).

R is vector based. Individual constants or values just are vectors with the special length
1. They do not get a special treatment.

Compound
Data Types

Vectors basic R data types.

Matrices vectors with two-dimensional layout.

See also Appendix A.10 “Data Manipulations”
(page Suppl.A-56).

Arrays vectors with higher-dimensional layout.

dim() defines a dimension attribute.

Example: x < -runif(100)

dim(x) < - c(5, 5, 4)

array() generates a new vector with specified dimension
structure.

Example: z < - array(0, c(4, 3, 2))

See also Appendix A.10 “Data Manipulations”
(page Suppl.A-56).

Factors special case for categorical data.

factor() converts a numeric vector into a factor.

See also Section ??.

ordered() converts a vector into a factor with ordered levels.
This is a shortcut for factor(x, ..., ordered =

TRUE).

(cont.)→

Suppl.A-52 R AS A PROGRAMMING LANGUAGE AND ENVIRONMENT

Compound
Data Types

(cont.)

levels() returns the levels of a factor.

Example: x <- c("a", "b", "a", "c", "a")

xf <- factor(x)

levels(xf)

results in
[1] "a" "b" "c"

tapply() applies a function separately for all levels of factors
in a list.

Lists analogous to vectors, with elements of possibly different types.

list() generates a list.

Syntax: list(〈components〉)

[[]] access to individual components of a list by index.

〈list$component〉
access to individual components by names.

Example: l <- list(name = "xyz", age = 22, fak =

"math")

> l[[2]]
22

>l$age

22

Data Frames data frames analogous to arrays resp. lists, with column-wise
uniform type and uniform column length.

data.frame()

analogous to list(), but restrictions have to be sat-
isfied.

attach() attaches a database to the current search list. For
access to components the component name will be
sufficient.

detach()

ACCESSING COMPONENTS Suppl.A-53

A.9 Accessing Components

The length of vectors is a dynamic attribute. It is extended or shortened as needed.
In particular, an implicit “recycling rule” applies: if a vector does not have the length
necessary for some operation, it is repeated periodically up to the length required.

Vector components can be accessed by index. The indices can be specified explicitly or
in the form of an expression rule.

Accessing
Components

x[〈indices〉] indicated components of x.

Example: x[1:3]

x[-〈indices〉] x omitting indicated components.

Example: x[-3] x omitting the 3. component.

x[〈condition〉] components of x, for which the 〈condition〉 holds.

Example: x[x<0.5]

which() give the indices of a logical object, allowing for array indices.

subset() is a polymorphic function and returns subsets of vectors, matri-
ces or data frames by specified conditions.

Indices Individual vector components are accessed by index.

Example: x[[3]]

The index can be specified directly, or using symbolic names or
rules.

Examples:

a[[1]] the first element

x[[-3]] error: attempt to access more than one element.

Vectors (and other objects) can be mapped to higher-dimensional constructs. The layout
is described by a additional dim attribute. By convention the imbedding goes by column,
that is, the first index varies first (FORTRAN convention). Operators and functions can
evaluate the dimension attribute.

R Index Access

dim() gets or sets dimensions of an object.

Example: x <- 1:12; dim (x) <- c(3, 4)

(cont.)→

Suppl.A-54 R AS A PROGRAMMING LANGUAGE AND ENVIRONMENT

R Index Access

(cont.)

dimnames() gets or sets names for the dimensions of an object.

nrow() gives the number of rows = dimension 1.

ncol() gives the number of columns = dimension 2.

matrix() generates a matrix with given specifications.

Syntax: matrix(data = NA, nrow = 1, ncol = 1, by-

row = FALSE, dimnames = NULL)

See also Example ?? (page ??)

array() generates a possibly higher-dimensional matrix.

Example: array(x, dim = length(x), dimnames = NULL)

NCOL() and NROW() are variants treating a vector as a one-column resp. as a one-row
matrix.

R Iterators

apply() applies a function to the rows or columns of a matrix.

Syntax: apply(x, MARGIN, FUNCTION, ...)

MARGIN = 1: rows, MARGIN = 2: columns

See also Example ?? (page ??).

lapply() applies a function to the elements of a list.

Syntax: lapply(X, FUN, ...)

sapply() applies a function to the elements of a list, of a vector or a matrix.
If possible, dimension names are carried over.

Syntax: sapply(X, FUN, ..., simplify = TRUE,

USE.NAMES = TRUE)

mapply() applies a function to multiple list or vector arguments.

Syntax: mapply(FUN, ..., MoreArgs = NULL,simplify =

TRUE, USE.NAMES = TRUE)

Vectorize() returns a new function that acts as if mapply was called. This
can be used as a stepping stone to make a function vectorized.

Syntax: Vectorize(FUN, vectorize.args =

arg.names,simplify = TRUE, USE.NAMES =

TRUE)

(cont.)→

ACCESSING COMPONENTS Suppl.A-55

R Iterators

(cont.)

tapply() applies a function to components of an object depending on a
list of controlling factors.

by() object-oriented variant of tapply.

Syntax: by(data, INDICES, FUN, ...)

aggregate() calculates statistics for subsets.

Syntax: aggregate(x, ...)

replicate() evaluates an expression repeatedly (for example, with generating
random numbers for simulation).

Syntax: replicate(n, expr, simplify = TRUE)

outer() generates a matrix with all pair-wise combinations from two vec-
tors, and applies a function to each pair.

Syntax: outer(vec1, vec2, FUNCTION, ...)

Suppl.A-56 R AS A PROGRAMMING LANGUAGE AND ENVIRONMENT

A.10 Data Manipulation

Array Access

cbind() combines by columns.

rbind() combines by rows.

split() splits a vector or matrix into the groups defined by a factor.

Syntax: split(x, f, drop = FALSE,...)

unsplit() combines components to a vector or matrix, i.e., reverses
split().

table() generates a table of counts.

prop.table() expresses table entries as fraction of marginal table, i.e., gives
relative counts.

t() transposes rows and columns.

Syntax: t(x)

aperm() Transpose an array, with subscripts permuted as indicated by
perm.

Syntax: aperm(x, perm)

where perm is a permutation of the indices of x.

Transformations

duplicated() checks for duplicate or multiple values.

unique() generates a vector without multiple values.

match() gives first position of a value in a vector.

pmatch() partial matching

Character
String
Transformations

casefold() translates characters, in particular from upper - to lowercase or
vice versa.

tolower() translates to lowercase.

(cont.)→

DATA MANIPULATION Suppl.A-57

Character
String
Transformations

(cont.)

toupper() translates to uppercase.

chartr() translates characters in a character vector.

substr() extracts or replaces substrings in a character vector.

substring() extracts or replaces substrings in a text (respects encoding and
other attributes)

paste() concatenates vectors after converting to character. See also
cat().

strsplit() splits the elements of a character vector into substrings.

grep() pattern matching.

gsub() pattern substitution, by regular patterns.

abbreviate() abbreviates strings.

Transformations

table() generates a table of counts.

expand.grid() generates a data frame with all combinations of the factors given.

gl() generates factors by specifying the pattern of their levels.

reshape() converts between a cross classification table (column per vari-
able) and a long table (variables in rows, with additional indica-
tor column).

merge() merges data frames. See help(merge) for examples. merge()

supports various versions of data base join operations.

Vector
Manipulation

seq() generates a sequence.

stack() concatenates multiple vectors from a data frame or list into a
single vector and generates a factor indicating the source of each
item.

Syntax: stack(x, ...)

(cont.)→

Suppl.A-58 R AS A PROGRAMMING LANGUAGE AND ENVIRONMENT

Vector
Manipulation

(cont.)

unstack() splits a vector by an indicator variable, i.e., reverses the opera-
tion of stack().

Syntax: unstack(x, ...)

split() splits a vector into the groups defined by a factor.

Syntax: split(x, f, drop = FALSE,...)

unsplit() combines components to a vector, i.e., reverses split().

Syntax: unsplit(value, f, drop = FALSE)

cut() converts a numeric to factor. cut() divides the range of a vector
into intervals and creates a factor indicating the interval for each
value.

Syntax: cut(x, ...)

OPERATORS Suppl.A-59

A.11 Operators

Expressions in R can be composed of objects and operators. The following table of
operators is ordered by precedence (highest rank on top). See help(Syntax).

Basic R opera-
tors

$ select component by name.

Example: list$item

[[[indexing, access to elements.

Example: x[i]

^ exponentiation (right to left).

Example: x^3

- unary minus.

: sequence generation.

Examples: 1:5

5:1

% 〈name〉% special operators. Can also be user defined.

Examples: "%deg2%"<-function(a, b) a + b^2

2 %deg2% 4

* / multiplication, division.

+ - addition, subtraction.

< > <= >=

== !=

comparison operators.

! negation.

& |
&& ||

and, or .
&&, || are “shortcut” operators.

<- -> <<- ->> assignment.

If operands do not have the same length, the shorter operand is repeated cyclically.

Operators of the form %〈name〉% can be defined by the user. The definition follows the rules
for function definitions.

Expressions can be written as a sequence with separating semicolons. Expression groups can
be combined by enclosing braces {. . .}.

Suppl.A-60 R AS A PROGRAMMING LANGUAGE AND ENVIRONMENT

A.12 Functions

Functions are special objects. Functions can return objects as results.

R Function
Declarations

Declarations function (〈formal argument list〉)
〈expression〉
Example: fak <- function(n) prod(1:n)

Formal
argument

〈argument name〉
〈argument name〉 = 〈default value〉

Formal
argument list

list of formal argument, separated by commas.

Examples: n, mean = 0, sd = 1

. . . variable argument list. Variable argument lists can be propagated to
imbedded functions.

Example: mean.of.all <- function (...)mean(c(...))

Function result return 〈value〉 stops function evaluation and returns value.

〈value〉 as last expression in a function declaration: returns value.

Assignments In general, assignments operate only on local copies of variables. As-
signments done within a function are temporary. They are lost after
exit from the function. The assignment with <<-, however, looks for
the target in the complete search chain. It can be used if global and
permanent assignments are intended within a function.

Syntax: 〈Variable〉<<-〈value〉

R Function Call

Function call 〈name〉(〈Supplied (actual) argument list〉)
Example: fak(3)

Supplied
argument list

Values are matched by position. Deviating from this, names can be
used to control the matching.
Initial parts of the names suffice (exception: after a variable argument
list, names must be given completely).
Function missing() can be used to check, whether a corresponding
actual argument is missing for a formal argument.

Syntax: 〈list of values〉
〈argument name〉 = 〈values〉

Example: rnorm(10, sd = 2)

FUNCTIONS Suppl.A-61

Arguments for functions are passed by value. This helps consistency, but involves overhead for
memory management and copying. If this overhead needs to be avoided, the information pro-
vided by environment() allows direct access to variables. Techniques to use this are described
in [8].

Special case: Functions with names of the form xxx<- extend the assignment function. Ex-
ample:

Input
"inc<-" <-function (x, value) x+value

x <- 10

inc(x) <- 3

x

Output
[1] 13

In R assignment functions the value argument must be called “value”.

Suppl.A-62 R AS A PROGRAMMING LANGUAGE AND ENVIRONMENT

A.13 Debugging and Profiling

Revised from Appendix ?? (page ??): changes in “Profiling Support”.

R provides a collection of tools for identification of errors. These are particularly helpful in
connection with functions. browser() can be used to switch to a browser mode. In this mode,
the usual R instructions can be used. Besides this, there is a small number of special instructions.
With debug() , the browser mode is activated automatically upon entry to a function. The
browser mode is marked by a special prompt Browse[xx]>.

〈return〉 Goes to the next instruction, if the function is under control of debug.
Continuous with the expression evaluation if browser has been called directly.

n Goes to the next instruction (also if browser has been called directly).

cont Continuous with the expression evaluation.

c Short for cont. Continues the expression evaluation.

where Shows call nesting.

Q Stops execution and jumps back to base state.

Debug Help

browser() suspends execution and enters the browser mode.

Syntax: browser()

recover() shows a list of the current call hierarchy. An entry from this list can
be chosen for inspection by browser() . With c you leave the browser

and return to recover. With 0 you leave recover()

Syntax: recover()

Hint: With options(error = recover), error handling for a
function is directed to call browser() automatically in
case of an error.

debug() marks a function for debugger control. On subsequent calls to the
function, the debugger is activated and switches to browser mode.

Syntax: debug(〈function〉)

undebug() cancels debugger control for a function.

Syntax: undebug(〈function〉)

trace() marks a function for trace control. On subsequent calls to the function,
the call is signalled together with its arguments.

Syntax: trace(〈function〉)

untrace() cancels trace control for a function.

Syntax: untrace(〈function〉)

(cont.)→

DEBUGGING AND PROFILING Suppl.A-63

Debug Help

(cont.)

traceback() in case of error inside of a function the current calling stack is stored
in a variable .Traceback. traceback() evaluates this variable and
displays its content.

Syntax: traceback()

try() Calls a function. Allows for user-defined error handling.

Syntax: traceback(〈expression〉)

To measure execution time in selected code ranges, R provides a“profiling”. This is only available
if R has been compiled with the appropriate options. The options installed at compiling can be
queried using capabilities(). See Appendix A.7 “System Inspection” (page Suppl.A-50).

Profiling Support

system.time() returns the execution time of an expression. This function is available
in all implementations.

Syntax: system.time(〈expr〉, 〈gcFirst〉)

Rprof() records active functions periodically. This function is only available if
R has been compiled for “profiling”.
With memory.profiling = TRUE, in addition to the timing the mem-
ory usage is recorded periodically. This option is only available if R
has been compiled correspondingly.

Syntax: Rprof(filename = "Rprof.out", append = FALSE,

interval = 0.02, memory.profiling = FALSE)

Use Rprof(NULL) to switch off profiling.

Rprofmem() records memory requirements on demand.
This function is only available if R has been compiled for “memory
profiling”.

Syntax: Rprofmem(filename = "Rprofmem.out", append =

FALSE, threshold = 0)

Use Rprofmem(NULL) to switch off profiling.

summaryRprof() summarises the output of Rprof() and reports the timing by function.

Syntax: summaryRprof(filename = "Rprof.out", chunksize

= 5000, memory = c("none", "both", "tseries",

"stats"), index = 2, diff = TRUE, exclude =

NULL)

As an alternative, the Perl script R CMD Rprof can be
used. See R CMD Rprof -help for usage information.

Suppl.A-64 R AS A PROGRAMMING LANGUAGE AND ENVIRONMENT

A.14 Control Structures

R Control
Structures

if conditional execution.

Syntax: if (〈log. expression1〉) 〈expression2〉
The logical expression1 may return only one logical
value. For vector-oriented access use ifelse.

Syntax: if (〈log. expression1〉) 〈expression2〉 else

〈expression3〉

ifelse element wise conditional execution.

Syntax: ifelse(〈log. expression1〉,
〈expression2〉, 〈expression3〉)
evaluates the logical expression1 element wise on a vec-
tor, and returns expression2 if the evaluation gives true,
else expression3.

Example: trimmedX <- ifelse (abs(X)<2, x, sign(X)*2)

switch evaluates an expression and executes an instruction based on the re-
sult.

Syntax: switch(〈expression1〉, . . .)
expression1 must return a numeric value or a character
string. . . . is an explicit list of alternative actions.

Example: centre <- function (x , type) { switch(type,

mean = mean(x),

median = median(x),

trimmed = mean(x, trim = .1)}

for iteration (loop).

Syntax: for (〈name〉 in 〈expression1〉) 〈expression2〉

repeat iteration. Must be terminated explicitly, for example with break.

Syntax: repeat 〈expression〉

Example: pars<-init

repeat { res<- get.resid (data, pars)

if (converged(res)) break

pars<-new.fit (data, pars)}

(cont.)→

CONTROL STRUCTURES Suppl.A-65

R Control
Structures

(cont.)

while conditional repetitions.

Syntax: while (〈log. expression〉) 〈expression〉

Example: pars<-init; res <- get.resid (data, pars)

while (!converged(res)) { pars<-
new.fit(data, pars)

res<- get.resid}

break terminates the current loop and exits.

next terminates the current loop cycle and advances to next cycle.

Note: In R loops should be avoided if possible in favour of more efficient language constructs
(see [12]).

Suppl.A-66 R AS A PROGRAMMING LANGUAGE AND ENVIRONMENT

A.15 Input and Output to Data Streams; External Data

R Input/
Output

write() writes data to a file.

Syntax: write(val, file)

Example: write(x, file = "data")

source() executes the R instruction from the file indicated.

Syntax: source("〈file name〉")

Example: source("cmnds.R")

Sweave() executes the R instruction from the file indicated and entangles em-
bedded text. Sweave can be used for automatic report generation.

Syntax: Sweave("〈file name〉", ...)

sink() redirects output in the file specified.

Syntax: sink(”〈file name〉”)

Example: sink() redirects the output back to the console.

dump() writes the commands defining an object. The object can be regener-
ated from this output using source().

Syntax: dump(list, file = "〈dumpdata.R〉", append =

FALSE)

R can access data from local files indicated by a usual file path or from remote files accessed
by an URL reference. On most systems, direct access to a clipboard is available as well. More
system-specific information is available using help(connections).

To edit or enter data, R provides edit() . This is a polymorphic function For the special case
of matrix-like data, data.entry() is provided, using a spreadsheet model.

For exchange, the data formats have to be harmonised between all parties. For import from
data bases or other systems, several packages are available, for example library(foreign)

for Stata, SAS, Minitab and SPSS, library(RODBC) for SQL. For more information, see the
manual “Data Import/Export” [15].

Within R, prepared data are usually provided as data frames. If additional objects such as
functions or parameters are necessary, they can be made accessible in bundled form as packages.
See Appendix A.16 (page Suppl.A-69).

For the exchange from R to R, a special exchange format can be used. Files in this format can
be generated with save() and conventionally have the name suffix .Rda. These files can be
loaded again using load() .

A general purpose function to load data us data() . Depending on the suffix of the input file
name, data() branches for several special cases. Besides .Rda usual suffixes for data input files
are .tab or .txt. The online help function help(data) gives additional information.

INPUT AND OUTPUT TO DATA STREAMS; EXTERNAL DATA Suppl.A-67

Data Input/Out-
put for R

save() stores data in an external file.

Syntax: save(〈names of the objects to be stored〉, file =

〈file name〉, ...)

save.image() is a short-cut and stores data of the workspace in an external file.

load() loads data from an external file.

Syntax: load(file = 〈file name〉, ...)

data() loads data. data() can handle various file formats, if the access paths
and filenames follow the R conventions.

Syntax: data(... , list = character(0),

package = c(.packages(), .Autoloaded),

lib.loc = .lib.loc)

Example: data(crimes) # loads the data set ’crimes’

For the flexible exchange with other programs in general text-based files are provided. Some
conventions can make exchange easier:

• in table form

• only ASCII characters (for example, no umlaut!)

• variables arranged in columns

• columns separated by tabulator stops

• possibly a column header in row 1

• possibly a row label in column 1

For reading the function read.table() is provided, and for writing, there is write.table() .
Besides read.table() there are several variants that are adapted to usual data formats. These
are documented under help(read.table).

Input and Output
of Data for
Exchange

read.table() reads data tables.

Syntax: read.table(file, header = FALSE,

sep = "\t", ...)

Examples: read.table(〈file name〉,
header = TRUE, sep = "\t")
headers in row 1, row labels in column 1
read.table(〈file name〉,
header = TRUE, sep = ’\t’)
now row number, headers in row 1,

(cont.)→

Suppl.A-68 R AS A PROGRAMMING LANGUAGE AND ENVIRONMENT

Input and Output
of Data for
Exchange

(cont.)

write.table() writes data table.

Syntax: write.table(file, header = FALSE, sep = ’\t’,
...)

Examples: write.table(〈data frame〉, 〈file name〉, header =

TRUE,

sep = ’\t’)
headers in row 1, row labels in column 1

write.table(〈data frame〉, 〈file name〉,
header = TRUE, sep = ’\t’)
now row number, headers in row 1.

read.csv() reads comma-separated data tables.

write.csv() writes comma-separated data tables.

read.csv2() reads semicolon-separated data tables, using a comma as decimal sep-
arator.

write.csv2() writes semicolon-separated data tables, using a comma as decimal
separator.

By default, read.table() converts data to factor variables if possible. This behaviour can
be modified with the argument as.is when calling of read.table(). This modification is, for
example, necessary to read date and time information as for example in the following example
from [9]:

date col in all numeric format yyyymmdd

df <- read.table("laketemp.txt", header = TRUE)

as.Date(as.character(df$date), "%Y-%m-%d")

first two cols in format mm/dd/yy hh:mm:ss

Note as.is = in read.table to force character

library("chron")

df <- read.table("oxygen.txt", header = TRUE, as.is = 1:2)

chron(df$date, df$time)

For sequential reading, scan() is provided. Files with data in fixed format (by character
columns) can be read with read.fwf() .

LIBRARIES, PACKAGES Suppl.A-69

A.16 Libraries, Packages

External information can be stored in (text) files and packages. In general, additional functions
are provided as packages. Packages may be installed as part of the basic installation or installed
by the user. Once packages are installed, they are loaded with

library()

when needed. Data sets contained in the package are then included in the search path and can
be listed using data() without arguments:

data()

Example:

library(nls)

data()

data(Puromycin)

If you use R packages, please treat them as you would treat any other scientific source of
information. Credit should be given where credit is due, and proper citations should be included.
The function citation() gives the bibliographic information to use.

Package Utilities

install.packages() installs add-on package in 〈lib〉, downloading it from the archive CRAN
or from specified archives.

Syntax: install.packages(pkgs, lib, CRAN = getOp-

tion("CRAN"), ...)

Example: install.packages("mypackage.tgz", repos=NULL

installs package from a local file.

library() loads an installed add-on package into the current workspace.

Syntax: library(package, ...)

See also Section ?? “Packages” (page ??).

require() tries to load an add-on package; gives warning on error.

Syntax: require(package, ...)

detach() releases an add-on package and removes it from the search path.

Syntax: detach(〈name〉)

package.manager() if implemented, interface for management of installed packages.

Syntax: package.manager()

package.skeleton() creates a skeleton for a new package.

Syntax: package.skeleton(name = "〈anRpackage〉", list,

...)

citation() gives bibliographic information for citing a package.

Syntax: citation(〈package name〉, lib.loc = NULL)

Suppl.A-70 R AS A PROGRAMMING LANGUAGE AND ENVIRONMENT

For Unix/Linux/Mac OS X, the main tools are available as commands:
R CMD check <directory> # checks a directory for compliance with the R conventions

R CMD build <directory> # generates an R package

Detailed information for building R packages is in “Writing R Extensions” ([17]).

MATHEMATICAL FUNCTIONS; LINEAR ALGEBRA Suppl.A-71

A.17 Mathematical Functions; Linear Algebra

For basic arithmetic operators, see help(Arithmetic). For trigonometric functions, information
is available using help(Trig). For special mathematical functions, including beta() , facto-
rial() , choose() , see help(Special).

For linear algebra, the most important functions are widely standardised and implemented in
C libraries such as BLAS/ATLAS and LAPACK. R makes use of these libraries and provides
an interface to the most important functions.

Linear Algebra

t() transposes a matrix.

diag() generates a diagonal matrix.

%*% matrix multiplication.

rowsum() gives row sums for a matrix.

colsum() gives column sums for a matrix.

rowMeans() gives row means for a matrix.

colMeans() gives column means for a matrix.

eigen() computes eigenvalues and eigenvectors of real or complex matrices.

svd() singular value decomposition of a matrix.

qr() QR decomposition of a matrix.

determinant() determinant of a matrix.

solve() solves linear equations, or computes inverse.

If possible, statistical functions should be used and direct access to the linear algebra functions
should be avoided.

Optimisation
and Fitting

optim() general purpose optimisation.

nlm() carries out a minimisation of a function using a Newton-type algo-
rithm.

lm() fits a linear model.

glm() fits a generalised linear model.

nls() determines the non-linear (weighted) least-squares estimates of the
parameters of a (possibly non-linear) model.

approx() linear interpolation.

spline() cubic spline interpolation.

Use the online help functions and search for the keyword smooth to find more fitting methods.

Suppl.A-72 R AS A PROGRAMMING LANGUAGE AND ENVIRONMENT

A.18 Model Descriptions and Diagnostics

Mathematically, linear statistical models can be specified by a design matrix X and written
generally as

Y = Xβ + ε,
where the matrix X has to be specified.

R allows us to specify models by giving the rules for how to build the design matrix.

Operator Syntax Meaning Example

∼ Y ∼M Y depends on M Y ∼ X results in
E(Y) = a+ bX

+ M1 +M2 include M1 and M2 Y ∼ X + Z
E(Y) =
a+ bX + cZ

− M1 −M2 include M1,
but exclude M2

Y ∼ X − 1
E(Y) = bX

: M1 : M2 tensor product, that is,
all combinations of lev-
els of M1 and M2

%in% M1%in%M2 modified tensor
product

a+ b%in%a corre-
sponds to a+ a : b

∗ M1 ∗M2 “crossed” M1 + M2 corre-
sponds to M1 +
M2 +M1 : M2

/ M1/M2 “nested”: M1 + M2

%in%M1

ˆ Mˆn M with all “interac-
tions” up to level n

I() I(M) interpret M ; terms in
M retain their original
meaning; the result de-
termines the model

Y ∼ (1 + I(X^2)

)

corresponds to
E(Y) = a+ bX2

Table A.39 Wilkinson-Rogers Notation for Linear Models

The model specification is also possible for generalised (not linear) models.

Examples:

y ∼ 1 + x corresponds to yi = (1 xi)(β1 β2)
> + ε

y ∼ x short for y ∼ 1 + x

(a constant term is assumed implicitly)

MODEL DESCRIPTIONS AND DIAGNOSTICS Suppl.A-73

y ∼ 0 + x corresponds to yi = xi · β + ε

log(y) ∼ x1 + x2 corresponds to log(yi) = (1 xi1 xi2)(β1 β2 β3)
> + ε

(a constant term is assumed implicitly)

y ∼ A one-way analysis of variance with factor A

y ∼ A + x covariance analysis with factor A and covariable x

y ∼ A * B two-factor crossed layout with factors A and B

y ∼ A/B two-factor hierarchical layout
with factor A and sub-factor B

Example:

lm(y ∼ poly(x, 4), data = experiment)

analyses the data set “experiment” with a linear model for polynomial regression of degree 4.

For an economic transition between models, for example for model comparison, the function
update() is available. It updates and (by default) re-fits a model by extracting the call stored in
the object, updating the call and evaluating that call, given the new information. In particular,
it can be used to re-fit a model to a changed (possibly corrected) data set.

Model
Administration

formula() extracts a model formula from an object.

terms() extracts terms of the model formula from an object.

contrasts() specifies contrasts.

update() updates and re-fits, or changes a model.

model.matrix() generates the design matrix for a model.

Standard
Analysis

lm() linear model.

See also Chapter ??.

glm() generalised linear model.

nls() non-linear least squares.

nlm() general non-linear minimisation.

update() update and re-fit, or change a model.

anova() analysis of variance.

Suppl.A-74 R AS A PROGRAMMING LANGUAGE AND ENVIRONMENT

For (generalised) linear models, various influence measures are provided. See help(influence).
Some classical indicators are

Influence
Diagnostics

rstandard() standardised leave-one-out residuals.

rstudent() (externally) studentised residuals.

dffits() DFFITS influence on fit.

dfbeta() DFBETA influence on parameter estimation.

dfbetas() DFBETA influence on parameter estimation, standardised by a leave-
one-out estimate of the coefficient standard error.

covratio() influence on variance of parameter estimation.

cooks.distance() Cook’s distance (scaled as F-values).

hatvalues() leverage.

GRAPHIC FUNCTIONS Suppl.A-75

A.19 Graphic Functions

R provides two graphics systems: The basic graphics system of R implements a model that
is oriented at pen and paper drawing. The lattice graphics system is an additional second
graphics system that is oriented at a viewport/object model. For information about lattice
see help(lattice). For a survey about the functions in lattice see library(help = lattice).
Information about the basic graphics system follows here. Additional graphics systems are
available as packages.

Graphic functions fall essentially in three groups:

“high level” functions. These define a new output.

“low level” functions. These modify an existing output.

parametrisations. These modify the settings of the graphics system.

Graphic devices can be opened explicitly. For example a call to pdf() will open a pdf device.
Subsequent graphic output is written as pdf information to a file. The file must be closed by
a balancing call to dev.off() . If no device is open, using a high-level graphics function will
cause a default device to be opened. Usually this will direct graphic output to the screen. See
help(Devices) for more information on graphic devices.

A.19.1 High-Level Graphics

High-Level
Graphics

plot() generic graphic output.

pairs() pair-wise scatterplots.

coplot() scatterplots, conditioned on covariables.

qqplot() QQ Plot.

qqnorm() Gaussian QQ Plot.

qqline() adds a line to a Gaussian QQ Plot, passing through the first and third
quartile.

hist() histogram. See also Section ??, page ??.

boxplot() box-and-whisker plot.

dotchart() draws a Cleveland dot plot.

curve() evaluates a function or an expression and draws a curve.

Example: curve(dnorm, from = -3, to = 3)

image() colour coded z against x, y.

contour() contour plot of z against x, y.

persp() 3D surface.

matplot() plots the columns of one matrix against the columns of another.

(cont.)→

Suppl.A-76 R AS A PROGRAMMING LANGUAGE AND ENVIRONMENT

High-Level
Graphics

(cont.)

mosaicplot() mosaic displays to visualise (standardised) residuals of a log-linear
model for the table.

termplot() plots regression terms against their predictors, optionally with stan-
dard errors and partial residuals added.

Corresponding function names for the lattice graphics are in Table ?? (page ??).

A.19.2 Low-Level Graphics

Most high-level functions have an argument add. If the function is called with add = FALSE, it
can be used to add elements to an existing plot. Moreover, there are several low-level functions
that suppose that there is already a defined plot environment. This is usually set by high-level
functions, but may be modified by par() : Besides the physical layout, information about the
scales, such as range and possible logarithmic transformations, are part of the environment.

Low-Level
Plotting

points() generic function. Marks points at specified positions.

Syntax: points(x, ...)

symbols() draws symbols at selected points.

text() adds text labels at selected points.

lines() generic function. Joins points at specified positions.

Syntax: lines(x, ...)

segments() adds line segments.

abline() adds a line (in several representations) to a plot.

Syntax: abline(a, b, ...)

arrows() adds a line with arrows to a plot.

polygon() adds polygon with specified vertices.

rect() draws a rectangle.

axis() adds axis.

rug() adds a rug marking the data points.

Besides this, R has rudimentary possibilities for interaction with graphics.

GRAPHIC FUNCTIONS Suppl.A-77

Interactions

devAskNewPage() controls if a console prompt is given before starting a page of output.

locator() determines the position of mouse clicks.

A current graphics display has to be defined before
locator() is used.

Example: plot(runif(19))

locator(n = 3, type = "l")

Sys.sleep() suspends execution for a time interval.

Syntax: Sys.sleep(〈seconds〉)

getGraphicsEvent() waits for a keyboard or mouse event. Functions to respond to these
events can be specified.

This function needs a graphics display that supports
graphics events.

For more interactive facilities, see additional packages, in particular:

• rgl implements OpenGL for real-time 3d rendering,

• rggobi interfaces to the ggobi system for higher-dimensional exploration of data.

A.19.3 Annotations and Legends

The high-level functions generally offer the possibilities to add standard annotations by using
arguments:

main = main title, above the plot,

sub = plot caption, below the plot,

xlab = label for the x axis,

ylab = label for the y axis.

For documentation, see help(plot.default).

High-level functions are complemented by low-level functions.

Low Level
Annotation

title() adds main title, analogous to high-level argument main.

Syntax: title(main = NULL, sub = NULL, xlab = NULL, ylab

= NULL, ...)

text() adds text at specified coordinates.

Syntax: text(x, y = NULL, text, ...)

(cont.)→

Suppl.A-78 R AS A PROGRAMMING LANGUAGE AND ENVIRONMENT

Low Level
Annotation

(cont.)

legend() adds a legend block.

Syntax: legend(x, y = NULL, text, ...)

Example: plot(runif(100)); legend(locator(1), legend =

"You clicked here")

mtext() adds text to margin.

Syntax: mtext(text, side = 3, ...). The margins are denoted
by 1 = bottom, 2 = left, 3 = top, 4 = right).

For annotations, texts some times has to be shortened. Function and variable names can be
shortened using abbreviate() .

R gives (limited) possibilities for mathematical typesetting. If the text argument is a character
string, it is taken directly. If the text argument is an (unevaluated) R expression, R tries to
render the expression as usual in a mathematical formula. R expressions can be generated using
the functions expression() and evaluated with eval() or bquote() .

Example:

text(x, y, expression(paste(bquote("(", atop(n, x), ")"),

.(p)\^{}x, .(q)\^{}\n-x\})))

demo(plotmath) gives several examples for mathematical typesetting in plots.

A.19.4 Graphic Parameters and Layout

Parametrisations

par() sets parameters for the basic graphics system.

Syntax: see help(par).

Example: par(mfrow = c(m, n)) splits the graphic area in m rows
and n columns, to be filled row-wise. par(mfcol = c(m,

n)) fills the area column by column.

lattice.options() sets parameters for the lattice graphics system.

Syntax: see help(lattice.options)

(cont.)→

GRAPHIC FUNCTIONS Suppl.A-79

Parametrisations

(cont.)

split.screen() splits the graphic area in parts.

Syntax: split.screen(figs, screen, erase = TRUE).
If figs is a pair of two arguments, these will fix the num-
ber of rows and columns.
If figs is a matrix, each row gives the coordi-
nates of a graphic area in relative coordinates [0 . . . 1].
split.screen() can be nested.

screen() selects graphic area for the next graphical output.

Syntax: screen(n = cur.screen, new = TRUE).

layout() divides the graphic area. This function is not compatible with other
layout functions.

Suppl.A-80 R AS A PROGRAMMING LANGUAGE AND ENVIRONMENT

A.20 Elementary Statistical Functions

Statistical
Functions

sum() sums up components of a vector.

cumsum() calculates cumulated sums.

prod() multiplies components of a vector.

cumprod() calculates cumulated products.

length() length of an object, for example a vector.

max()

min()

maximum, minimum.
See also pmax, pmin.

range() minimum and maximum.

cummax()

cummin()

cumulated maximum, minimum.

quantile() sample quantile.
For theoretical distributions, use qxxxx, for example qnorm.

median() median.

mean() mean, including trimmed mean.

var() variance, variance / covariance matrix.

sort() sorting.

rev() reverse sorting.

order() returns a permutation for sorting.

which.max() index of the (first) maximum of a numeric vector.

which.min() index of the (first) minimum of a numeric vector.

rank() rank in a sample.

DISTRIBUTIONS, RANDOM NUMBERS, DENSITIES. . . Suppl.A-81

A.21 Distributions, Random Numbers, Densities. . .

The base generator for uniform random numbers is administered by Random. Several types of
generators are available as base generator. For serious simulation it is strongly recom-
mended to read the recommendations of Marsaglia et al. (see help(.Random.seed)).
All non-uniform random number generators are derived from the current base generator. A
survey of most important non-uniform random number generators, their distribution functions
and their quantiles is given at the end of this section.

R Random
Numbers

.Random.seed .Random.seed is a global variable that holds the current state of the
basic random number generator. This variable can be stored and later
be restored with set.seed() .
Initially, there is no seed. Use set.seed() to define a seed. If no seed
has been defined, a new one is created based on the current clock time
when one is required.
Random number generators may use variables other than .Ran-

dom.seed to store their state information. To set a generator to a
defined state, always use set.seed() . Never set .Random.seed di-
rectly.

set.seed() initialises the random number generator.

Syntax: set.seed(seed, kind = NULL)

RNGkind()
RNGkind() gives the name of the current base generator.

RNGkind(〈name〉) sets a basic random number generator.

Syntax: RNGkind()

RNGkind(〈name〉)

Example: RNGkind("Wichmann-Hill")

RNGkind("Marsaglia-Multicarry")

RNGkind("Super-Duper")

sample() draws a sample from the values given in vector x, with or without
replacement (controlled by the value of replace).
Size is by default the length of x.
Optionally, prob can be a vector of probabilities for the values of x.

Syntax: sample(x, size, replace = FALSE, prob)

Example: Random permutation:
sample(x)

Biased coin:
val<-c("H", "T"")

prob<-c(0.3, 0.7)

sample(val, 10, replace = TRUE, prob)

Suppl.A-82 R AS A PROGRAMMING LANGUAGE AND ENVIRONMENT

If simulations shall be reproducible, the random number generator must be set to a well-defined
initial state for a reproduction. So the initial state needs to be recorded. An example is the
following statement sequence to store the current state:

save.seed <- .Random.seed

save.kind <- RNGkind()

These variables can be stored to a file and read from there when necessary. With

set.seed(save.seed, save.kind)

the state of the random number generator is then restored.

The individual function names for the common non-uniform generators and distribution func-
tions are combined from a prefix and the short name of the distribution (see the list below).
General pattern: if xxxx is the short name, then

rxxxx generates random numbers

dxxxx density or probability

pxxxx distribution function

qxxxx quantiles

Example:

x<-runif(100) generates 100 random variables with U(0, 1) distribution.

qf(0.95, 10, 2) calculates the 95% quantile of the F(10, 2) distribution.

Distributions Short Name Parameter and Default Values

Beta beta shape1, shape2, ncp = 0

Binomial binom size, prob

Cauchy cauchy location = 0, scale = 1

χ2 chisq df, ncp = 0

Exponential exp rate = 1

F f df1, df2 (ncp = 0)

Gamma gamma shape, scale = 1

Gauss norm mean = 0, sd = 1

Geometric geom prob

Hypergeometric hyper m, n, k

Lognormal lnorm meanlog = 0, sdlog = 1

Logistic logis location = 0, scale = 1

Negativ-Binomial nbinom size, prob

Poisson pois lambda

Student’s t t df

(cont.)→

DISTRIBUTIONS, RANDOM NUMBERS, DENSITIES. . . Suppl.A-83

Distributions Short Name Parameter and Default Values

Tukey Studentised Range tukey

Uniform unif min = 0, max = 1

Wilcoxon Signed Rank signrank n

Wilcoxon Rank Sum wilcox m, n

Weibull weibull shape, scale = 1

Additional support for generating random numbers is provided by library(distr) [18].

Suppl.A-84 R AS A PROGRAMMING LANGUAGE AND ENVIRONMENT

A.22 Computing on the Language

The language elements of R are objects, as are data or functions. They can be read and changed
like any other data or functions. Chapter 6 of the “R Language Definition” [16] gives details for
computing on the language. See also Section 2.1.5, “Function objects” of [16].

Conversions

parse() converts input into a list of R expressions. parse executes the parse,
but does not evaluate the expression.

deparse() converts an R expression given in internal representation into a char-
acter string.

expression() generates an R expression in internal representations.

Example: integrate <- expression(integral(fun, lims))

See also ??: mathematical typesetting in plot annotations

substitute() R expression with evaluation of all defined terms.

bquote() R expression with selective evaluation. Terms in .() are evaluated.

Examples: n<-10; bquote(n^2 == .(n*n))

Evaluation

eval() evaluates an expression.

References

[1] Daniel Adler and Duncan Murdoch. rgl: 3D Visualization Device System (OpenGL), 2008.
R package version 0.81.

[2] Anthony C. Atkinson and Marco Riani. Robust Diagnostic Regression Analysis. Springer,
2000.

[3] Anthony C. Atkinson, Marco Riani, and Andrea Cerioli. Exploring Multivariate Data
with the Forward Search. Springer, 2004.

[4] David A. Belsley, Edwin Kuh, and Roy E. Welsch. Regression diagnostics: identifying
influential data and sources of collinearity. John Wiley & Sons, New York-Chichester-
Brisbane, 1980.

[5] David B. Dahl and contributions from many others. xtable: Export Tables to LaTeX or
HTML, 2008. R package version 1.5-3.

[6] Dai Feng and Luke Tierney. Computing and displaying isosurfaces in R. Journal of
Statistical Software, 28(1), 2008.

[7] D. Firth. Generalized linear models. In D.V. Hinkley, N. Reid, and E.J. Snell, editors,
Statistical Theory and Modeling, chapter 3, pages 55–82. Chapman and Hall, London,
1991.

[8] Robert Gentleman and Ross Ihaka. Lexical scope and statistical computing. Journal of
Computational and Graphical Statistics, 9:491–508, 2000.

[9] Gabor Grothendieck and Thomas Petzoldt. R help desk: Date and time classes in R. R
News, 4(1):29–32, June 2004.

[10] David James and Kurt Hornik. chron: Chronological Objects Which Can Handle Dates
and Times, 2008. R package version 2.3-24. S original by David James, R port by Kurt
Hornik.

[11] Bent Jørgensen. The Theory of Linear Models. Chapman & Hall, New York, 1993.

[12] Uwe Ligges and John Fox. R help desk: How can I avoid this loop or make it faster? R
News, 8(1):46–50, May 2008.

[13] P. McCullagh and J.A. Nelder. Generalized linear models. Number 37 in Monographs on
statistics and applied probability. London : Chapman & Hall, 2nd edition, 1989.

[14] Paul Murrell. R Graphics. Chapman & Hall/CRC, Boca Raton, Fla., 2006.

[15] R Development Core Team. R Data Import/Export, 2008.

[16] R Development Core Team. The R language definition, 2008.

[17] R Development Core Team. Writing R Extensions, 2008.

[18] Peter Ruckdeschel, Matthias Kohl, Thomas Stabla, and Florian Camphausen. S4 classes
for distributions. R News, 6(2):2–6, May 2006.

[19] Deepayan Sarkar. lattice: Lattice Graphics, 2008. R package version 0.17-15.

85

86 REFERENCES

[20] William N. Venables and Brian D. Ripley. S Programming. Statistics and Computing.
Springer, New York, 2000.

[21] William N. Venables and Brian D. Ripley. Modern Applied Statistics with S. Springer,
Heidelberg, fourth edition, 2002.

[22] Sanford Weisberg. Applied Linear Regression. Wiley Series in Probability and Statistics.
Wiley, New York, third edition, 2005.

Functions and Variables by Topic

Topic NA
is.〈type〉, Suppl.A-46
is.na, Suppl.A-47

Topic algebra
%*%, Suppl.A-71
approx, Suppl.A-71
beta, Suppl.A-71
choose, Suppl.A-71
colMeans, Suppl.A-71
colsum, Suppl.A-71
diag, Suppl.A-71
eigen, Suppl.A-71
factorial, Suppl.A-71
glm, Suppl.A-71
lm, Suppl.A-71
matrix, Suppl.A-54
nlm, Suppl.A-71
nls, Suppl.A-71
optim, Suppl.A-71
qr, Suppl.A-71
rowMeans, Suppl.A-71
rowsum, Suppl.A-71
solve, Suppl.A-71
spline, Suppl.A-71
svd, Suppl.A-71
t, Suppl.A-71

Topic aplot
abline, 14, 15, Suppl.A-76
arrows, Suppl.A-76
axis, Suppl.A-76
contour, 35, 36, Suppl.A-75
coplot, Suppl.A-75
filled.contour, 35
image, 35, 36, 38, Suppl.A-75
legend, Suppl.A-78
lines, Suppl.A-76
mtext, Suppl.A-78
plot, 35
points, Suppl.A-76
polygon, Suppl.A-76
rect, Suppl.A-76

rug, Suppl.A-76
screen, Suppl.A-79
segments, Suppl.A-76
split.screen, Suppl.A-79
symbols, Suppl.A-76
text, Suppl.A-77
title, Suppl.A-77

Topic arith
cummax, Suppl.A-80
cummin, Suppl.A-80
cumprod, Suppl.A-80
cumsum, Suppl.A-80
max, Suppl.A-80
min, Suppl.A-80
prod, Suppl.A-80
range, Suppl.A-80
sort, Suppl.A-80
sum, Suppl.A-80

Topic array
[, 2, Suppl.A-53
[[, 2, Suppl.A-52
%*%, Suppl.A-71
aggregate, Suppl.A-55
aperm, Suppl.A-56
apply, Suppl.A-54
array, Suppl.A-54
cbind, Suppl.A-56
colMeans, Suppl.A-71
colsum, Suppl.A-71
determinant, Suppl.A-71
diag, Suppl.A-71
dim, Suppl.A-53
dimnames, Suppl.A-54
eigen, Suppl.A-71
expand.grid, Suppl.A-57
gl, Suppl.A-57
matrix, Suppl.A-54
merge, Suppl.A-57
NCOL, Suppl.A-54
ncol, Suppl.A-54
NROW, Suppl.A-54

87

88 Functions and Variables by Topic

nrow, Suppl.A-54
outer, Suppl.A-55
prop.table, Suppl.A-56
qr, Suppl.A-71
rbind, Suppl.A-56
rowMeans, Suppl.A-71
rowsum, Suppl.A-71
subset, Suppl.A-53
svd, Suppl.A-71
t, Suppl.A-56
var, Suppl.A-80
which, Suppl.A-53

Topic attribute
attributes, Suppl.A-49
length, Suppl.A-49
mode, Suppl.A-49
names, Suppl.A-49
storage.mode, Suppl.A-49
str, Suppl.A-48
structure, Suppl.A-49
typeof, Suppl.A-46

Topic category
by, Suppl.A-55
cut, Suppl.A-58
factor, Suppl.A-51
levels, Suppl.A-52
ordered, Suppl.A-51
prop.table, Suppl.A-56
split, Suppl.A-58
table, Suppl.A-56
tapply, Suppl.A-55
unsplit, Suppl.A-56

Topic character
abbreviate, Suppl.A-78
casefold, Suppl.A-56
chartr, Suppl.A-57
grep, Suppl.A-57
gsub, Suppl.A-57
paste, Suppl.A-57
pmatch, Suppl.A-56
strsplit, Suppl.A-57
substr, Suppl.A-57
substring, Suppl.A-57
tolower, Suppl.A-56
toupper, Suppl.A-57

Topic chron
chron, Suppl.A-68

Topic classes
class, Suppl.A-49
data.frame, Suppl.A-52

is.vector, 2
methods, Suppl.A-48

Topic connection
deparse, Suppl.A-84
dump, Suppl.A-66
read.csv, Suppl.A-68
read.fwf, Suppl.A-68
read.table, Suppl.A-67
scan, Suppl.A-68
sink, Suppl.A-66
source, Suppl.A-66
write, Suppl.A-66
write.csv, Suppl.A-68

Topic data
<-, 1
<<-, 1, 9
[, 2, Suppl.A-53
[[, 2, Suppl.A-52
$, Suppl.A-52
apropos, Suppl.A-41
attach, 9, Suppl.A-52
bquote, Suppl.A-84
data, Suppl.A-50
deparse, Suppl.A-84
detach, 9, Suppl.A-69
environment, Suppl.A-43
eval, Suppl.A-84
find, Suppl.A-43
library, Suppl.A-69
require, Suppl.A-69
search, Suppl.A-50
searchpaths, Suppl.A-43
substitute, Suppl.A-84
sys.parent, Suppl.A-44

Topic debugging
browser, Suppl.A-62
debug, Suppl.A-62
recover, Suppl.A-62
trace, Suppl.A-62
traceback, Suppl.A-63
untrace, Suppl.A-62

Topic device
dev.off, Suppl.A-75
pdf, Suppl.A-75
split.screen, Suppl.A-79

Topic distribution
.Random.seed, Suppl.A-81
hist, 38, Suppl.A-75
qqnorm, 38, Suppl.A-75
qqplot, Suppl.A-75

Functions and Variables by Topic 89

RNGkind, Suppl.A-81
sample, Suppl.A-81
set.seed, Suppl.A-81

Topic documentation
apropos, Suppl.A-41
args, Suppl.A-41
data, Suppl.A-69
demo, Suppl.A-41
example, Suppl.A-41
find, Suppl.A-43
help, Suppl.A-41
help.search, Suppl.A-41
help.start, Suppl.A-41
library, Suppl.A-42
package.manager, Suppl.A-69
RSiteSearch, Suppl.A-41
str, Suppl.A-49
vignette, Suppl.A-42

Topic dplot
cloud, 36
densityplot, 38
expression, Suppl.A-84
hist, 38, Suppl.A-75
lattice.options, Suppl.A-50
matplot, Suppl.A-75
mosaicplot, Suppl.A-76
par, Suppl.A-76
parallel, 38
persp, 35, 36, 38, Suppl.A-75
qq, 38
split.screen, Suppl.A-79
termplot, Suppl.A-76
trellis.par.set, Suppl.A-50
wireframe, 37

Topic dynamic
rggobi, Suppl.A-77
rgl, 38, Suppl.A-77

Topic environment
apropos, Suppl.A-41
browser, Suppl.A-62
debug, Suppl.A-62
find, Suppl.A-43
lattice.options, Suppl.A-78
ls, Suppl.A-50
objects, Suppl.A-43
options, Suppl.A-50
par, Suppl.A-78
rm, Suppl.A-45
search, 8
searchpaths, 8

undebug, Suppl.A-62
Topic error
debug, Suppl.A-62
options, Suppl.A-50
trace, Suppl.A-62
try, Suppl.A-63

Topic file
data.entry, Suppl.A-66
dir, Suppl.A-50
dump, Suppl.A-66
load, Suppl.A-67
package.skeleton, Suppl.A-69
read.csv, Suppl.A-68
read.csv2, Suppl.A-68
read.fwf, Suppl.A-68
read.table, Suppl.A-67
save, Suppl.A-67
save.image, Suppl.A-67
scan, Suppl.A-68
sink, Suppl.A-66
source, Suppl.A-66
Sweave, Suppl.A-66
system, Suppl.A-50
write, Suppl.A-66
write.csv, Suppl.A-68
write.csv2, Suppl.A-68
write.table, Suppl.A-68

Topic grDevices
devAskNewPage, Suppl.A-77
plotmath, Suppl.A-78
trans3d, 35

Topic graphics
par, 37
points, 35

Topic hplot
barchart, 38
barplot, 38
boxplot, 38, Suppl.A-75
bwplot, 38
cloud, 36, 38
contour3d, 39
contourplot, 38
curve, 2, Suppl.A-75
dev.off, Suppl.A-75
dotchart, 38, Suppl.A-75
dotplot, 38
hist, 38, Suppl.A-75
histogram, 38
image3d, 39
matplot, Suppl.A-75

90 Functions and Variables by Topic

mosaicplot, Suppl.A-76
pairs, 38, Suppl.A-75
pdf, Suppl.A-75
persp, 35, 36, 38, Suppl.A-75
plot, 38, Suppl.A-48
qqmath, 38
qqnorm, 38, Suppl.A-75
qqplot, 38, Suppl.A-75
splom, 38
stripchart, 38
stripplot, 38
termplot, Suppl.A-76
wireframe, 37, 38
xyplot, 38

Topic htest
wilcox.test, 34
wilcox_test, 34

Topic iplot
devAskNewPage, Suppl.A-77
getGraphicsEvent, Suppl.A-77
lattice.options, Suppl.A-78
locator, Suppl.A-77
par, Suppl.A-78
rggobi, Suppl.A-77
rgl, 38, Suppl.A-77
Sys.sleep, Suppl.A-77

Topic iteration
apply, Suppl.A-54
by, Suppl.A-55
lapply, Suppl.A-54
mapply, Suppl.A-54
replicate, Suppl.A-55
sapply, Suppl.A-54
tapply, Suppl.A-52
Vectorize, Suppl.A-54

Topic list
[, 2, Suppl.A-53
[[, 2, Suppl.A-53
$, Suppl.A-52
lapply, Suppl.A-54
list, Suppl.A-52
replicate, Suppl.A-55
sapply, Suppl.A-54
Vectorize, Suppl.A-54

Topic logic
duplicated, Suppl.A-56
ifelse, 4
is.〈type〉, Suppl.A-46
is.inf, Suppl.A-47
is.na, Suppl.A-47

is.nan, Suppl.A-47
match, Suppl.A-56
na.fails, Suppl.A-47
na.omit, Suppl.A-47
unique, Suppl.A-56

Topic manip
as.〈type〉, Suppl.A-46
cbind, Suppl.A-56
cut, Suppl.A-58
deparse, Suppl.A-84
dimnames, Suppl.A-54
duplicated, Suppl.A-56
is.〈type〉, Suppl.A-46
list, Suppl.A-52
mapply, Suppl.A-54
match, Suppl.A-56
merge, Suppl.A-57
order, Suppl.A-80
rbind, Suppl.A-56
reshape, Suppl.A-57
rev, Suppl.A-80
seq, Suppl.A-57
sort, Suppl.A-80
split, Suppl.A-56
stack, Suppl.A-57
str, Suppl.A-48
structure, Suppl.A-48
unique, Suppl.A-56
unsplit, Suppl.A-58
unstack, Suppl.A-58
Vectorize, Suppl.A-54
which.max, Suppl.A-80
which.min, Suppl.A-80

Topic math
integrate, 2
is.inf, Suppl.A-47
is.nan, Suppl.A-47
na.fail, Suppl.A-47
na.omit, Suppl.A-47

Topic methods
class, Suppl.A-49
data.frame, Suppl.A-52
methods, Suppl.A-50
new, 31
setClass, 31
summary, Suppl.A-48

Topic misc
forward, 23
MASS, 23

Topic models

Functions and Variables by Topic 91

anova, Suppl.A-73
contrasts, Suppl.A-73
dfbetas, 23
dffits, 23
expand.grid, Suppl.A-57
formula, Suppl.A-73
gl, Suppl.A-57
glm, Suppl.A-73
influence.measures, 23
model.matrix, Suppl.A-73
nls, Suppl.A-69
rstandard, 23
rstudent, 23
stdres, 23
studres, 23
terms, Suppl.A-73
update, Suppl.A-73

Topic multivariate
var, Suppl.A-80

Topic non-linear
nlm, Suppl.A-73
nls, Suppl.A-69

Topic optimize
nlm, Suppl.A-71
optim, Suppl.A-71

Topic print
cat, Suppl.A-48
format, Suppl.A-48
ls.str, Suppl.A-43
options, Suppl.A-50
print, 37, Suppl.A-48
str, Suppl.A-49
write.table, Suppl.A-67

Topic programming
bquote, Suppl.A-78
browser, Suppl.A-62
cmpfun, 8
debug, Suppl.A-62
deparse, Suppl.A-84
environment, Suppl.A-43
eval, Suppl.A-84
expression, Suppl.A-84
install.packages, 7
missing, Suppl.A-60
parse, Suppl.A-84
recover, Suppl.A-62
source, Suppl.A-66
substitute, Suppl.A-84
Sweave, Suppl.A-66
sys.calls, 12

sys.frame, 12
sys.parent, Suppl.A-44
trace, Suppl.A-62
traceback, Suppl.A-63
try, Suppl.A-63
undebug, Suppl.A-62
untrace, Suppl.A-62
Vectorize, 5, 12

Topic regression
anova, Suppl.A-73
contrasts, Suppl.A-73
cooks.distance, Suppl.A-74
covratio, Suppl.A-74
dfbeta, Suppl.A-74
dfbetas, 23, Suppl.A-74
dffits, 23, Suppl.A-74
formula, Suppl.A-73
glm, Suppl.A-73
hatvalues, Suppl.A-74
influence.measures, 23
lm, 13, 24, Suppl.A-73
nls, Suppl.A-73
rstandard, 23, Suppl.A-74
rstudent, 23, Suppl.A-74
stdres, 23
studres, 23

Topic sysdata
.Random.seed, Suppl.A-81
RNGkind, Suppl.A-81
set.seed, Suppl.A-81

Topic univar
max, Suppl.A-80
mean, Suppl.A-80
median, Suppl.A-80
min, Suppl.A-80
order, Suppl.A-80
quantile, Suppl.A-80
range, Suppl.A-80
rank, Suppl.A-80
sort, Suppl.A-80
var, Suppl.A-80
which.max, Suppl.A-80
which.min, Suppl.A-80

Topic utilities
capabilities, Suppl.A-50
citation, Suppl.A-69
data, Suppl.A-42
data.entry, Suppl.A-66
demo, Suppl.A-41
edit, Suppl.A-66

92 Functions and Variables by Topic

example, Suppl.A-41
getwd, Suppl.A-50
install.packages, Suppl.A-69
library, Suppl.A-42
ls.str, Suppl.A-43
mapply, Suppl.A-54
package.skeleton, Suppl.A-69
Rprof, Suppl.A-63
Rprofmem, Suppl.A-63
setwd, Suppl.A-50
str, Suppl.A-49
summaryRprof, Suppl.A-63
Sweave, Suppl.A-66
system, Suppl.A-50
system.time, Suppl.A-63
Vectorize, Suppl.A-54
vignette, Suppl.A-42

Function and Variable Index

<-, 1
<<-, 1, 9
[, 2, Suppl.A-53
[[, 2, Suppl.A-53
$, Suppl.A-52

abbreviate, Suppl.A-78
abline, 14, 15, Suppl.A-76
aggregate, Suppl.A-55
anova, 26, Suppl.A-73
anova.lm, 27
anscombe, 27
aov, 24, 25, 27
aperm, Suppl.A-56
apply, Suppl.A-54
approx, Suppl.A-71
apropos, Suppl.A-43
args, Suppl.A-41
array, Suppl.A-51
arrows, Suppl.A-76
as.〈type〉, Suppl.A-46
as.data.frame, 24
attach, 9, Suppl.A-52
attitude, 27
attributes, Suppl.A-49
axis, Suppl.A-76

barchart, 38
barplot, 38
beta, Suppl.A-71
boxplot, 38, Suppl.A-75
bquote, Suppl.A-84
browser, Suppl.A-62
bwplot, 38
by, Suppl.A-55

capabilities, Suppl.A-50
casefold, Suppl.A-56
cat, Suppl.A-48
cbind, Suppl.A-56

chartr, Suppl.A-57
choose, Suppl.A-71
citation, Suppl.A-69
class, 26, Suppl.A-49
cloud, 36, 38
cmpfun, 8
coef, 27
colMeans, Suppl.A-71
colsum, Suppl.A-71
confint, 27
contour, 35, 36, Suppl.A-75
contour3d, 39
contourplot, 38
contrasts, Suppl.A-73
cooks.distance, Suppl.A-74
coplot, Suppl.A-75
covratio, Suppl.A-74
cummax, Suppl.A-80
cummin, Suppl.A-80
cumprod, Suppl.A-80
cumsum, Suppl.A-80
curve, 2, Suppl.A-75
cut, Suppl.A-58

data, Suppl.A-42
data.entry, Suppl.A-66
data.frame, Suppl.A-52
debug, Suppl.A-62
demo, Suppl.A-41
densityplot, 38
deparse, Suppl.A-84
detach, 9, Suppl.A-52
determinant, Suppl.A-71
dev.off, Suppl.A-75
devAskNewPage, Suppl.A-77
dfbeta, Suppl.A-74
dfbetas, 23, Suppl.A-74
dffits, 23, Suppl.A-74
diag, Suppl.A-71
dim, Suppl.A-51

93

94 Function and Variable Index

dimnames, Suppl.A-54
dir, Suppl.A-50
dotchart, 38, Suppl.A-75
dotplot, 38
dump, Suppl.A-66
duplicated, Suppl.A-56

edit, Suppl.A-66
effects, 26, 27
eigen, Suppl.A-71
environment, Suppl.A-43
eval, Suppl.A-78
example, Suppl.A-41
expand.grid, Suppl.A-57
expression, Suppl.A-84

factor, Suppl.A-51
factorial, Suppl.A-71
filled.contour, 35
find, Suppl.A-43
fitted, 27
format, Suppl.A-48
formula, 24, 25, Suppl.A-73
freeny, 27

getGraphicsEvent, Suppl.A-77
getwd, Suppl.A-50
gl, Suppl.A-57
glm, 27, Suppl.A-71
grep, Suppl.A-57
gsub, Suppl.A-57

hatvalues, Suppl.A-74
help, Suppl.A-50
help.search, Suppl.A-41
help.start, Suppl.A-41
hist, 38, Suppl.A-75
histogram, 38

ifelse, 4
image, 35, 36, 38, Suppl.A-75
image3d, 39
influence.measures, 23
install.packages, 7, Suppl.A-69
integrate, 2
is.〈type〉, Suppl.A-46
is.inf, Suppl.A-47
is.na, Suppl.A-47

is.nan, Suppl.A-47
is.vector, 2

lapply, Suppl.A-54
lattice.options, Suppl.A-50
legend, Suppl.A-78
length, Suppl.A-49
levels, Suppl.A-52
library, Suppl.A-69
LifeCycleSavings, 27
lines, Suppl.A-76
list, Suppl.A-52
lm, 13, 24, Suppl.A-71
lm.fit, 25, 27
lm.influence, 27
lm.wfit, 27
load, Suppl.A-67
locator, Suppl.A-77
longley, 27
ls, Suppl.A-43
ls.str, Suppl.A-43

mapply, Suppl.A-54
match, Suppl.A-56
matplot, Suppl.A-75
matrix, Suppl.A-54
max, Suppl.A-80
mean, Suppl.A-80
median, Suppl.A-80
merge, Suppl.A-57
methods, Suppl.A-50
min, Suppl.A-80
missing, Suppl.A-60
mode, Suppl.A-46
model.frame, 26
model.matrix, 25, Suppl.A-73
model.matrix.default, 25
model.offset, 25
mosaicplot, Suppl.A-76
mtext, Suppl.A-78

na.exclude, 24
na.fail, 24, Suppl.A-47
na.omit, 24, Suppl.A-47
names, Suppl.A-49
NCOL, Suppl.A-54
ncol, Suppl.A-54
new, 31
nlm, Suppl.A-71

Function and Variable Index 95

nls, Suppl.A-71
NROW, Suppl.A-54
nrow, Suppl.A-54

objects, Suppl.A-43
offset, 25
optim, Suppl.A-71
options, 24, Suppl.A-50
order, Suppl.A-80
ordered, Suppl.A-51
outer, Suppl.A-55

package.manager, Suppl.A-69
package.skeleton, Suppl.A-69
pairs, 38, Suppl.A-75
par, 37, Suppl.A-76
parallel, 38
parse, Suppl.A-84
paste, Suppl.A-57
pdf, Suppl.A-75
persp, 35, 36, 38, Suppl.A-75
plot, 35, 38, Suppl.A-48
pmatch, Suppl.A-56
points, 35, Suppl.A-76
polygon, Suppl.A-76
predict, 27
predict.lm, 27
print, 37, Suppl.A-48
print.lm (lm), 24
prod, Suppl.A-80
programming (ifelse), 4
prop.table, Suppl.A-56

qq, 38
qqline (qqnorm), Suppl.A-75
qqmath, 38
qqnorm, 38, Suppl.A-75
qqplot, 38, Suppl.A-75
qr, Suppl.A-71
quantile, Suppl.A-80

range, Suppl.A-80
rank, Suppl.A-80
rbind, Suppl.A-56
read.csv, Suppl.A-68
read.csv2, Suppl.A-68
read.fwf, Suppl.A-68
read.table, Suppl.A-67

recover, Suppl.A-62
rect, Suppl.A-76
replicate, Suppl.A-55
require, Suppl.A-69
reshape, Suppl.A-57
residuals, 27
rev, Suppl.A-80
rm, Suppl.A-45
RNGkind, Suppl.A-81
rowMeans, Suppl.A-71
rowsum, Suppl.A-71
Rprof, Suppl.A-63
Rprofmem, Suppl.A-63
RSiteSearch, Suppl.A-41
rstandard, 23, Suppl.A-74
rstudent, 23, Suppl.A-74
rug, Suppl.A-76

sample, Suppl.A-81
sapply, Suppl.A-54
save, Suppl.A-66
save.image, Suppl.A-67
scan, Suppl.A-68
screen, Suppl.A-79
search, 8, Suppl.A-50
searchpaths, 8, Suppl.A-43
segments, Suppl.A-76
seq, Suppl.A-57
set.seed, Suppl.A-81
setClass, 31
setwd, Suppl.A-50
sink, Suppl.A-66
solve, Suppl.A-71
sort, Suppl.A-80
source, Suppl.A-66
spline, Suppl.A-71
split, Suppl.A-56
split.screen, Suppl.A-79
splom, 38
stack, Suppl.A-57
stackloss, 27
stdres, 23
storage.mode, Suppl.A-49
str, Suppl.A-49
stripchart, 38
stripplot, 38
strsplit, Suppl.A-57
structure, Suppl.A-48
studres, 23
subset, Suppl.A-53

96 Function and Variable Index

substitute, Suppl.A-84
substr, Suppl.A-57
substring, Suppl.A-57
sum, Suppl.A-80
summary, Suppl.A-48
summary.lm, 27
summaryRprof, Suppl.A-63
svd, Suppl.A-71
Sweave, Suppl.A-66
swiss, 27
symbols, Suppl.A-76
sys.calls, 12
sys.frame, 12
sys.parent, Suppl.A-44
Sys.sleep, Suppl.A-77
system, Suppl.A-50
system.time, Suppl.A-63

t, Suppl.A-71
table, Suppl.A-57
tapply, Suppl.A-52
termplot, Suppl.A-76
terms, 26, Suppl.A-73
text, Suppl.A-76
title, Suppl.A-77
tolower, Suppl.A-56
toupper, Suppl.A-57
trace, Suppl.A-62
traceback, Suppl.A-63
trans3d, 35
trellis.par.set, Suppl.A-50
try, Suppl.A-63
ts.intersect, 26
typeof, Suppl.A-46

undebug, Suppl.A-62
unique, Suppl.A-56
unsplit, Suppl.A-58
unstack, Suppl.A-58
untrace, Suppl.A-62
update, Suppl.A-73
utilities (integrate), 2

var, Suppl.A-80
vcov, 27
Vectorize, 5, 12, Suppl.A-54
vignette, Suppl.A-42

which, Suppl.A-53

which.max, Suppl.A-80
which.min, Suppl.A-80
wilcox.test, 34
wilcox_test, 34
wireframe, 37, 38
write, Suppl.A-66
write.csv, Suppl.A-68
write.csv2, Suppl.A-68
write.table, Suppl.A-68

xyplot, 38

Subject Index

analysis of variance, Suppl.A-73
annotation, see legend
argument

function, Suppl.A-41

Bonferroni correction, 19

class, 31

data structures, Suppl.A-51
date, see DateTimeClasses
DateTimeClasses, Suppl.A-68
debugging, Suppl.A-62
distribution, Suppl.A-81

environment, 8
exact test, 34

factor, Suppl.A-51
fit, 21
frame, 8
function, Suppl.A-60
function closure, 11

Gauss-Markov estimator, 13
ggobi, Suppl.A-77

hat matrix, 16, 28
hat value, seeleverage16
histogram, 38, Suppl.A-75

influence diagnostics, Suppl.A-74
interactive, 38, Suppl.A-76

join, see merge

lattice, 35–39, Suppl.A-75

least squares estimator, 13
leave-one-out, 23
leave-one-out diagnostics, see influence

measures
legend, Suppl.A-77
leverage, 16, 22
lexical scoping, 11
linear algebra, Suppl.A-71
literate programming, Suppl.A-66

matrix, Suppl.A-71
merge, Suppl.A-57
method, 31
missing

argument, Suppl.A-60
model

generalised linear, 30, Suppl.A-71
linear, Suppl.A-73
non-linear, Suppl.A-73
simple linear, 17
update, Suppl.A-73

Monte Carlo, 30

name space, 12

object, 31
OpenGL, 38, Suppl.A-77

pdf, Suppl.A-75
plot

box-and-whisker, 38, Suppl.A-75
cloud, 36
colour image, Suppl.A-75
contour, 35, Suppl.A-75
coplot, 38, Suppl.A-75
curve, Suppl.A-75
diagnostic, 20
dots, Suppl.A-75
filled.contour, 35

97

98 Subject Index

histogram, 38, Suppl.A-75
image, 35
matrix, Suppl.A-75
mosaic, Suppl.A-76
perspective, 35, Suppl.A-75
PP , 22
residual, 21
Tukey-Anscombe, 29
wireframe, 37

plot3d
cloud, 36
perspective, 36
wireframe, 37

plotmath, Suppl.A-78
polymorphic, Suppl.A-48
profiling, Suppl.A-62
promise, 11

quantile, Suppl.A-81
quartile, Suppl.A-75

random numbers, Suppl.A-81
reproducible, Suppl.A-81

random seed, Suppl.A-81
rank, Suppl.A-80
report generation, Suppl.A-66
residual, 16, 21, 29

standardised, 22
studentised, 23

residuals, Suppl.A-74

search path, Suppl.A-43
slot, 31

test
exact, 34
Wilcoxon, Suppl.A-83

tie, 34
time, see DateTimeClasses

update, Suppl.A-73

variance
residual, 17

Wilkinson-Rogers notation, Suppl.A-72

	Introduction
	Basic Data Analysis
	R Programming Conventions
	R Complements
	Functions
	Vectorisation
	Compilation

	Search Paths, Frames and Environments

	Regression
	Least Squares Estimation
	Regression Diagnostics
	Gauss-Markov Estimator

	Beyond Linear Regression
	Generalised Linear Models

	R Complements
	Classes and Polymorphic Functions

	Comparisons
	Shift/Scale Families, and Stochastic Order
	Tests for Shift Alternatives

	Dimensions 1, 2, 3, …,
	R Complements

	R as a Programming Language and Environment
	Help and Information
	Names and Search Paths
	Administration and Customisation
	Basic Data Types
	Output for Objects
	Object Inspection
	System Inspection

	Complex Data Types
	Accessing Components
	Data Manipulation
	Operators
	Functions
	Debugging and Profiling
	Control Structures
	Input and Output to Data Streams; External Data
	Libraries, Packages
	Mathematical Functions; Linear Algebra
	Model Descriptions and Diagnostics
	Graphic Functions
	High-Level Graphics
	Low-Level Graphics
	Annotations and Legends
	Graphic Parameters and Layout

	Elementary Statistical Functions
	Distributions, Random Numbers, Densities…
	Computing on the Language
	References
	Functions and Variables by Topic

	Function and Variable Index
	Subject Index

